Your browser doesn't support javascript.
loading
Interfacial Debonding Detection for Rectangular CFST Using the MASW Method and Its Physical Mechanism Analysis at the Meso-Level.
Chen, Hongbing; Xu, Bin; Wang, Jiang; Luan, Lele; Zhou, Tianmin; Nie, Xin; Mo, Yi-Lung.
Afiliación
  • Chen H; Department of Civil Engineering, Tsinghua University, Beijing 100084, China. hongbingchen2019@163.com.
  • Xu B; College of Civil Engineering, Huaqiao University, Xiamen 361021, China. binxu@hqu.edu.cn.
  • Wang J; Fujian Provincial Key Lab of Intelligent Infrastructures and Monitoring, Huaqiao University, Xiamen 361021, China. binxu@hqu.edu.cn.
  • Luan L; College of Civil Engineering, Huaqiao University, Xiamen 361021, China. 1611404010@hqu.edu.cn.
  • Zhou T; Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA. luan.l@husky.neu.edu.
  • Nie X; Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4006, USA. zhoutm2011@gmail.com.
  • Mo YL; Department of Civil Engineering, Tsinghua University, Beijing 100084, China. xinnie@tsinghua.edu.cn.
Sensors (Basel) ; 19(12)2019 Jun 20.
Article en En | MEDLINE | ID: mdl-31226855
ABSTRACT
In this study, the transient multichannel analysis of surface waves (MASW) is proposed to detect the existence, the location and the length of interface debonding defects in rectangular concrete-filled steel tubes (CFST). Mesoscale numerical analysis is performed to validate the feasibility of MASW-based interfacial debonding detection. Research findings indicate that the coaxial characteristics in the Rayleigh wave disperse at the starting point of the debonding area and gradually restores at the end of the defect. For healthy specimens, the surface wave mode in CFST is closer to the Rayleigh wave. However, it can be treated as a Lamb wave since the steel plate is boundary-free on both sides in the debonding area. The displacement curves are further investigated with forward analysis to obtain the dispersion curves. The mesoscale numerical simulation results indicate that the propagation characteristic of the surface wave is dominated by the debonding defect. The detectability of interfacial debonding detection for rectangular CFST using the MASW approach is numerically verified in this study. The proposed MASW-based nondestructive testing technique can achieve bond-slip detection by comparing the variation trend of the coaxial characteristics in the time-history output signals and the dispersion curves obtained from the forward analysis, for avoiding misjudgment of the experimental observations.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: Sensors (Basel) Año: 2019 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: Sensors (Basel) Año: 2019 Tipo del documento: Article País de afiliación: China