Your browser doesn't support javascript.
loading
OmicsARules: a R package for integration of multi-omics datasets via association rules mining.
Chen, Danze; Zhang, Fan; Zhao, Qianqian; Xu, Jianzhen.
Afiliación
  • Chen D; Computational Systems Biology Lab, Department of Bioinformatics, Shantou University Medical College (SUMC), No.22, Rd. Xinling, Shantou, China.
  • Zhang F; Computational Systems Biology Lab, Department of Bioinformatics, Shantou University Medical College (SUMC), No.22, Rd. Xinling, Shantou, China.
  • Zhao Q; Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital, Shantou University Medical College (SUMC), Shantou, 515041, China.
  • Xu J; Computational Systems Biology Lab, Department of Bioinformatics, Shantou University Medical College (SUMC), No.22, Rd. Xinling, Shantou, China.
BMC Bioinformatics ; 20(1): 554, 2019 Nov 08.
Article en En | MEDLINE | ID: mdl-31703610
BACKGROUND: The improvements of high throughput technologies have produced large amounts of multi-omics experiments datasets. Initial analysis of these data has revealed many concurrent gene alterations within single dataset or/and among multiple omics datasets. Although powerful bioinformatics pipelines have been developed to store, manipulate and analyze these data, few explicitly find and assess the recurrent co-occurring aberrations across multiple regulation levels. RESULTS: Here, we introduced a novel R-package (called OmicsARules) to identify the concerted changes among genes under association rules mining framework. OmicsARules embedded a new rule-interestingness measure, Lamda3, to evaluate the associated pattern and prioritize the most biologically meaningful gene associations. As demonstrated with DNA methlylation and RNA-seq datasets from breast invasive carcinoma (BRCA), esophageal carcinoma (ESCA) and lung adenocarcinoma (LUAD), Lamda3 achieved better biological significance over other rule-ranking measures. Furthermore, OmicsARules can illustrate the mechanistic connections between methlylation and transcription, based on combined omics dataset. OmicsARules is available as a free and open-source R package. CONCLUSIONS: OmicsARules searches for concurrent patterns among frequently altered genes, thus provides a new dimension for exploring single or multiple omics data across sequencing platforms.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Programas Informáticos / Biología Computacional / Genómica / Bases de Datos Genéticas / Minería de Datos Tipo de estudio: Risk_factors_studies Límite: Humans Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2019 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Programas Informáticos / Biología Computacional / Genómica / Bases de Datos Genéticas / Minería de Datos Tipo de estudio: Risk_factors_studies Límite: Humans Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2019 Tipo del documento: Article País de afiliación: China