Your browser doesn't support javascript.
loading
Single-Step Synthesis of Vertically Aligned Carbon Nanotube Forest on Aluminium Foils.
Nassoy, Fabien; Pinault, Mathieu; Descarpentries, Jérémie; Vignal, Thomas; Banet, Philippe; Coulon, Pierre-Eugène; Goislard de Monsabert, Thomas; Hauf, Harald; Aubert, Pierre-Henri; Reynaud, Cécile; Mayne-L'Hermite, Martine.
Afiliación
  • Nassoy F; NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France.
  • Pinault M; NAWA Technologies, Chez STMicroelectronics, 190 avenue Célestin Coq, Cedex 13106 Rousset, France.
  • Descarpentries J; NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France.
  • Vignal T; NAWA Technologies, Chez STMicroelectronics, 190 avenue Célestin Coq, Cedex 13106 Rousset, France.
  • Banet P; Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI, EA 2528), Université de Cergy-Pontoise, Cedex 95031 Neuville-sur-Oise, France.
  • Coulon PE; Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI, EA 2528), Université de Cergy-Pontoise, Cedex 95031 Neuville-sur-Oise, France.
  • Goislard de Monsabert T; LSI, CEA/DRF/IRAMIS, École Polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau, France.
  • Hauf H; NAWA Technologies, Chez STMicroelectronics, 190 avenue Célestin Coq, Cedex 13106 Rousset, France.
  • Aubert PH; NAWA Technologies, Chez STMicroelectronics, 190 avenue Célestin Coq, Cedex 13106 Rousset, France.
  • Reynaud C; Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI, EA 2528), Université de Cergy-Pontoise, Cedex 95031 Neuville-sur-Oise, France.
  • Mayne-L'Hermite M; NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France.
Nanomaterials (Basel) ; 9(11)2019 Nov 09.
Article en En | MEDLINE | ID: mdl-31717583
ABSTRACT
Vertically aligned carbon nanotube (VACNT) forests are promising for supercapacitor electrodes, but their industrialisation requires a large-scale cost-effective synthesis process suitable to commercial aluminium (Al) foils, namely by operating at a low temperature (<660 °C). We show that Aerosol-Assisted Catalytic Chemical Vapour Deposition (CCVD), a single-step roll-to-roll compatible process, can be optimised to meet this industrial requirement. With ferrocene as a catalyst precursor, acetylene as a carbon source and Ar/H2 as a carrier gas, clean and dense forests of VACNTs of about 10 nm in diameter are obtained at 615 °C with a growth rate up to 5 µm/min. Such novel potentiality of this one-step CCVD process is at the state-of-the-art of the multi-step assisted CCVD processes. To produce thick samples, long synthesis durations are required, but growth saturation occurs that is not associated with a diffusion phenomenon of iron in aluminium substrate. Sequential syntheses show that the saturation trend fits a model of catalytic nanoparticle deactivation that can be limited by decreasing acetylene flow, thus obtaining sample thickness up to 200 µm. Cyclic voltammetry measurements on binder-free VACNT/Al electrodes show that the CNT surface is fully accessible to the ionic liquid electrolyte, even in these dense VACNT forests.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Año: 2019 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Año: 2019 Tipo del documento: Article País de afiliación: Francia