Your browser doesn't support javascript.
loading
Toward Less Hazardous Industrial Compounds: Coupling Quantum Mechanical Computations, Biomarker Responses, and Behavioral Profiles To Identify Bioactivity of SN2 Electrophiles in Alternative Vertebrate Models.
Steele, W Baylor; Kristofco, Lauren A; Corrales, Jone; Saari, Gavin N; Corcoran, Eric J; Hill, Bridgett N; Mills, Margaret G; Gallagher, Evan; Kavanagh, Terrance J; Melnikov, Fjodor; Zimmerman, Julie B; Voutchkova-Kostal, Adelina; Anastas, Paul T; Kostal, Jakub; Brooks, Bryan W.
Afiliación
  • Steele WB; Department of Environmental Science , Baylor University , Waco , Texas 76798 , United States.
  • Kristofco LA; Institute of Biomedical Studies , Baylor University , Waco , Texas 76798 , United States.
  • Corrales J; Department of Environmental Science , Baylor University , Waco , Texas 76798 , United States.
  • Saari GN; Department of Environmental Science , Baylor University , Waco , Texas 76798 , United States.
  • Corcoran EJ; Department of Environmental Science , Baylor University , Waco , Texas 76798 , United States.
  • Hill BN; George Washington University , Washington , District of Columbia 20052 , United States.
  • Mills MG; Department of Environmental Science , Baylor University , Waco , Texas 76798 , United States.
  • Gallagher E; University of Washington , Seattle , Washington 98195 , United States.
  • Kavanagh TJ; University of Washington , Seattle , Washington 98195 , United States.
  • Melnikov F; University of Washington , Seattle , Washington 98195 , United States.
  • Zimmerman JB; Yale University , New Haven , Connecticut 06520 , United States.
  • Voutchkova-Kostal A; Yale University , New Haven , Connecticut 06520 , United States.
  • Anastas PT; George Washington University , Washington , District of Columbia 20052 , United States.
  • Kostal J; Yale University , New Haven , Connecticut 06520 , United States.
  • Brooks BW; George Washington University , Washington , District of Columbia 20052 , United States.
Chem Res Toxicol ; 33(2): 367-380, 2020 02 17.
Article en En | MEDLINE | ID: mdl-31789507
ABSTRACT
Sustainable molecular design of less hazardous chemicals promises to reduce risks to public health and the environment. Computational chemistry modeling coupled with alternative toxicology models (e.g., larval fish) present unique high-throughput opportunities to understand structural characteristics eliciting adverse outcomes. Numerous environmental contaminants with reactive properties can elicit oxidative stress, an important toxicological response associated with diverse adverse outcomes (i.e., cancer, diabetes, neurodegenerative disorders, etc.). We examined a common chemical mechanism (bimolecular nucleophilic substitution (SN2)) associated with oxidative stress using property-based computational modeling coupled with acute (mortality) and sublethal (glutathione, photomotor behavior) responses in the zebrafish (Danio rerio) and the fathead minnow (Pimephales promelas) models to identify whether relationships exist among biological responses and molecular attributes of industrial chemicals. Following standardized methods, embryonic zebrafish and larval fathead minnows were exposed separately to eight different SN2 compounds for 96 h. Acute and sublethal responses were compared to computationally derived in silico chemical descriptors. Specifically, frontier molecular orbital energies were significantly related to acute LC50 values and photomotor response (PMR) no observed effect concentrations (NOECs) in both fathead minnow and zebrafish. This reactivity index, LC50 values, and PMR NOECs were also significantly related to whole body glutathione (GSH) levels, suggesting that acute and chronic toxicity results from protein adduct formation for SN2 electrophiles. Shared refractory locomotor response patterns among study compounds and two alternative vertebrate models appear informative of electrophilic properties associated with oxidative stress for SN2 chemicals. Electrophilic parameters derived from frontier molecular orbitals were predictive of experimental in vivo acute and sublethal toxicity. These observations provide important implications for identifying and designing less hazardous industrial chemicals with reduced potential to elicit oxidative stress through bimolecular nucleophilic substitution.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Teoría Cuántica / Sustancias Peligrosas / Modelos Animales de Enfermedad / Locomoción Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals Idioma: En Revista: Chem Res Toxicol Asunto de la revista: TOXICOLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Teoría Cuántica / Sustancias Peligrosas / Modelos Animales de Enfermedad / Locomoción Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals Idioma: En Revista: Chem Res Toxicol Asunto de la revista: TOXICOLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos