Your browser doesn't support javascript.
loading
Resolution Limit of Taylor Dispersion: An Exact Theoretical Study.
Taladriz-Blanco, Patricia; Rothen-Rutishauser, Barbara; Petri-Fink, Alke; Balog, Sandor.
Afiliación
  • Taladriz-Blanco P; Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , 1700 Fribourg , Switzerland.
  • Rothen-Rutishauser B; Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , 1700 Fribourg , Switzerland.
  • Petri-Fink A; Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , 1700 Fribourg , Switzerland.
  • Balog S; Chemistry Department , University of Fribourg , Chemin du Musée 9 , 1700 Fribourg , Switzerland.
Anal Chem ; 92(1): 561-566, 2020 01 07.
Article en En | MEDLINE | ID: mdl-31815450
Taylor dispersion is a microfluidic analytical technique with a high dynamic range and therefore is suited well to measuring the hydrodynamic radius of small molecules, proteins, supramolecular complexes, macromolecules, nanoparticles and their self-assembly. Here we calculate an unaddressed yet fundamental property: the limit of resolution, which is defined as the smallest change in the hydrodynamic radius that Taylor dispersion can resolve accurately and precisely. Using concepts of probability theory and inferential statistics, we present a comprehensive theoretical approach, addressing uniform and polydisperise particle systems, which involve either model-based or numerical analyses. We find a straightforward scaling relationship in which the resolution limit is linearly proportional to the optical-extinction-weighted average hydrodynamic radius of the particle systems.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Anal Chem Año: 2020 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Anal Chem Año: 2020 Tipo del documento: Article País de afiliación: Suiza