Your browser doesn't support javascript.
loading
Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency.
Nguyen, David N; Roth, Theodore L; Li, P Jonathan; Chen, Peixin Amy; Apathy, Ryan; Mamedov, Murad R; Vo, Linda T; Tobin, Victoria R; Goodman, Daniel; Shifrut, Eric; Bluestone, Jeffrey A; Puck, Jennifer M; Szoka, Francis C; Marson, Alexander.
Afiliación
  • Nguyen DN; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
  • Roth TL; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
  • Li PJ; Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
  • Chen PA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
  • Apathy R; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
  • Mamedov MR; Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
  • Vo LT; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
  • Tobin VR; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.
  • Goodman D; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
  • Shifrut E; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
  • Bluestone JA; Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
  • Puck JM; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
  • Szoka FC; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
  • Marson A; Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
Nat Biotechnol ; 38(1): 44-49, 2020 01.
Article en En | MEDLINE | ID: mdl-31819258
ABSTRACT
Versatile and precise genome modifications are needed to create a wider range of adoptive cellular therapies1-5. Here we report two improvements that increase the efficiency of CRISPR-Cas9-based genome editing in clinically relevant primary cell types. Truncated Cas9 target sequences (tCTSs) added at the ends of the homology-directed repair (HDR) template interact with Cas9 ribonucleoproteins (RNPs) to shuttle the template to the nucleus, enhancing HDR efficiency approximately two- to fourfold. Furthermore, stabilizing Cas9 RNPs into nanoparticles with polyglutamic acid further improves editing efficiency by approximately twofold, reduces toxicity, and enables lyophilized storage without loss of activity. Combining the two improvements increases gene targeting efficiency even at reduced HDR template doses, yielding approximately two to six times as many viable edited cells across multiple genomic loci in diverse cell types, such as bulk (CD3+) T cells, CD8+ T cells, CD4+ T cells, regulatory T cells (Tregs), γδ T cells, B cells, natural killer cells, and primary and induced pluripotent stem cell-derived6 hematopoietic stem progenitor cells (HSPCs).
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Polímeros / Proteína 9 Asociada a CRISPR Límite: Adult / Humans Idioma: En Revista: Nat Biotechnol Asunto de la revista: BIOTECNOLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Polímeros / Proteína 9 Asociada a CRISPR Límite: Adult / Humans Idioma: En Revista: Nat Biotechnol Asunto de la revista: BIOTECNOLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos