CDK7 regulates organ size and tumor growth by safeguarding the Hippo pathway effector Yki/Yap/Taz in the nucleus.
Genes Dev
; 34(1-2): 53-71, 2020 01 01.
Article
en En
| MEDLINE
| ID: mdl-31857346
Hippo signaling controls organ size and tumor progression through a conserved pathway leading to nuclear translocation of the transcriptional effector Yki/Yap/Taz. Most of our understanding of Hippo signaling pertains to its cytoplasmic regulation, but how the pathway is controlled in the nucleus remains poorly understood. Here we uncover an evolutionarily conserved mechanism by which CDK7 promotes Yki/Yap/Taz stabilization in the nucleus to sustain Hippo pathway outputs. We found that a modular E3 ubiquitin ligase complex CRL4DCAF12 binds and targets Yki/Yap/Taz for ubiquitination and degradation, whereas CDK7 phosphorylates Yki/Yap/Taz at S169/S128/S90 to inhibit CRL4DCAF12 recruitment, leading to Yki/Yap/Taz stabilization. As a consequence, inactivation of CDK7 reduced organ size and inhibited tumor growth, which could be reversed by restoring Yki/Yap activity. Our study identifies an unanticipated layer of Hippo pathway regulation, defines a novel mechanism by which CDK7 regulates tissue growth, and implies CDK7 as a drug target for Yap/Taz-driven cancer.
Palabras clave
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Proteínas Nucleares
/
Transactivadores
/
Quinasas Ciclina-Dependientes
/
Proteínas de Drosophila
/
Drosophila melanogaster
/
Carcinogénesis
Tipo de estudio:
Prognostic_studies
Límite:
Animals
/
Humans
Idioma:
En
Revista:
Genes Dev
Asunto de la revista:
BIOLOGIA MOLECULAR
Año:
2020
Tipo del documento:
Article
País de afiliación:
Estados Unidos