Your browser doesn't support javascript.
loading
Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips.
Herland, Anna; Maoz, Ben M; Das, Debarun; Somayaji, Mahadevabharath R; Prantil-Baun, Rachelle; Novak, Richard; Cronce, Michael; Huffstater, Tessa; Jeanty, Sauveur S F; Ingram, Miles; Chalkiadaki, Angeliki; Benson Chou, David; Marquez, Susan; Delahanty, Aaron; Jalili-Firoozinezhad, Sasan; Milton, Yuka; Sontheimer-Phelps, Alexandra; Swenor, Ben; Levy, Oren; Parker, Kevin K; Przekwas, Andrzej; Ingber, Donald E.
Afiliación
  • Herland A; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
  • Maoz BM; Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden.
  • Das D; AIMES, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.
  • Somayaji MR; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
  • Prantil-Baun R; Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
  • Novak R; Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel.
  • Cronce M; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
  • Huffstater T; CFD Research Corporation, Huntsville, AL, USA.
  • Jeanty SSF; CFD Research Corporation, Huntsville, AL, USA.
  • Ingram M; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
  • Chalkiadaki A; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
  • Benson Chou D; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
  • Marquez S; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
  • Delahanty A; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
  • Jalili-Firoozinezhad S; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
  • Milton Y; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
  • Sontheimer-Phelps A; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
  • Swenor B; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
  • Levy O; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
  • Parker KK; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
  • Przekwas A; Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Portugal Graduate Program, Universidade de Lisboa, Lisbon, Portugal.
  • Ingber DE; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
Nat Biomed Eng ; 4(4): 421-436, 2020 04.
Article en En | MEDLINE | ID: mdl-31988459
ABSTRACT
Analyses of drug pharmacokinetics (PKs) and pharmacodynamics (PDs) performed in animals are often not predictive of drug PKs and PDs in humans, and in vitro PK and PD modelling does not provide quantitative PK parameters. Here, we show that physiological PK modelling of first-pass drug absorption, metabolism and excretion in humans-using computationally scaled data from multiple fluidically linked two-channel organ chips-predicts PK parameters for orally administered nicotine (using gut, liver and kidney chips) and for intravenously injected cisplatin (using coupled bone marrow, liver and kidney chips). The chips are linked through sequential robotic liquid transfers of a common blood substitute by their endothelium-lined channels (as reported by Novak et al. in an associated Article) and share an arteriovenous fluid-mixing reservoir. We also show that predictions of cisplatin PDs match previously reported patient data. The quantitative in-vitro-to-in-vivo translation of PK and PD parameters and the prediction of drug absorption, distribution, metabolism, excretion and toxicity through fluidically coupled organ chips may improve the design of drug-administration regimens for phase-I clinical trials.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Farmacocinética / Preparaciones Farmacéuticas / Microfluídica / Dispositivos Laboratorio en un Chip Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: Nat Biomed Eng Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Farmacocinética / Preparaciones Farmacéuticas / Microfluídica / Dispositivos Laboratorio en un Chip Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: Nat Biomed Eng Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos