Your browser doesn't support javascript.
loading
Ethylene insensitive3-like2 (OsEIL2) confers stress sensitivity by regulating OsBURP16, the ß subunit of polygalacturonase (PG1ß-like) subfamily gene in rice.
Jin, Jing; Duan, Jianli; Shan, Chi; Mei, Zhiling; Chen, Haiying; Feng, Huafeng; Zhu, Jian; Cai, Weiming.
Afiliación
  • Jin J; Tongji University, No. 1239 Siping Road, Shanghai, 200092, China; Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai, 200032, China; Unive
  • Duan J; Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai, 200032, China; University of Chinese Academy of Science, China.
  • Shan C; Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai, 200032, China; University of Chinese Academy of Science, China.
  • Mei Z; Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai, 200032, China; University of Chinese Academy of Science, China.
  • Chen H; Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai, 200032, China.
  • Feng H; Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai, 200032, China.
  • Zhu J; Tongji University, No. 1239 Siping Road, Shanghai, 200092, China. Electronic address: zhujian1@tongji.edu.cn.
  • Cai W; Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai, 200032, China; University of Chinese Academy of Science, China. Electronic address: wm
Plant Sci ; 292: 110353, 2020 Mar.
Article en En | MEDLINE | ID: mdl-32005373
ABSTRACT
The transcription factors EIN3 (ETHYLENE-INSENSITIVE 3) and EILs (EIN3-Likes) play important roles in plant development and defense responses; however, their mechanism in these processes remain unclear. Here, we report that OsEIL2, an EIN3-like transcription factor from rice (Oryza sativa), plays important roles in abiotic stress and leaf senescence. OsEIL2 is a nuclear-localized protein with transactivation activity in the C-terminus (amino acids 344-583) and can be induced by NaCl, polyethylene glycol (PEG), dark, and abscisic acid (ABA) treatment. Transgenic plants of overexpressing OsEIL2 (OsEIL2-OX) show reduced tolerance to salt and drought stress compared with the controls. While the transgenic plants of overexpressing OsEIL2-RNA interference (OsEIL2-RNAi) exhibit enhanced tolerance to salt and drought stress compared with the controls. Moreover, seedlings of OsEIL2-overexpressing transgenic plants exhibit delayed leaf development and an accelerated dark-induced senescence phenotype, whereas OsEIL2-RNAi plants display the opposite phenotype. We further found that OsEIL2 functions upstream of OsBURP14 and OsBURP16. OsBURP14 and OsBURP16 are the members of the ß subunit of polygalacturonase subfamilies. OsBURP16 overexpression reduced pectin content and cell adhesion and increased abiotic stress sensitivity in rice. OsEIL2 binds directly to the promoter of OsBURP14 and OsBURP16 and activates their transcript levels. We also found that OsEIL2 overexpression decreased the pectin content by increasing polygalacturonase (PG) activity. Taken together, these results revealed a new mechanism of OsEIL2 in abiotic stress responses. These findings provide new insights into plant resistance to abiotic stress.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Proteínas de Plantas / Oryza / Estrés Fisiológico / Factores de Transcripción Tipo de estudio: Diagnostic_studies Idioma: En Revista: Plant Sci Año: 2020 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Proteínas de Plantas / Oryza / Estrés Fisiológico / Factores de Transcripción Tipo de estudio: Diagnostic_studies Idioma: En Revista: Plant Sci Año: 2020 Tipo del documento: Article