Your browser doesn't support javascript.
loading
Towards a Probabilistic Understanding About the Context-Dependency of Species Interactions.
Song, Chuliang; Von Ahn, Sarah; Rohr, Rudolf P; Saavedra, Serguei.
Afiliación
  • Song C; Department of Civil and Environmental Engineering, MIT, 77 Massachusetts Av., Cambridge 02139, MA, USA.
  • Von Ahn S; Department of Mathematics, MIT, 77 Massachusetts Av., Cambridge 02139, MA, USA.
  • Rohr RP; Department of Biology - Ecology and Evolution, University of Fribourg Chemin du Musée 10, Fribourg CH-1700, Switzerland.
  • Saavedra S; Department of Civil and Environmental Engineering, MIT, 77 Massachusetts Av., Cambridge 02139, MA, USA. Electronic address: sersaa@mit.edu.
Trends Ecol Evol ; 35(5): 384-396, 2020 05.
Article en En | MEDLINE | ID: mdl-32007296
Observational and experimental studies have shown that an interaction class between two species (be it mutualistic, competitive, antagonistic, or neutral) may switch to a different class, depending on the biotic and abiotic factors within which species are observed. This complexity arising from the evidence of context-dependencies has underscored a difficulty in establishing a systematic analysis about the extent to which species interactions are expected to switch in nature and experiments. Here, we propose an overarching theoretical framework, by integrating probabilistic and structural approaches, to establish null expectations about switches of interaction classes across environmental contexts. This integration provides a systematic platform upon which it is possible to establish new hypotheses, clear predictions, and quantifiable expectations about the context-dependency of species interactions.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Simbiosis / Ecosistema Tipo de estudio: Prognostic_studies Idioma: En Revista: Trends Ecol Evol Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Simbiosis / Ecosistema Tipo de estudio: Prognostic_studies Idioma: En Revista: Trends Ecol Evol Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos