Your browser doesn't support javascript.
loading
Visualization of Aluminum Ions at the Mica Water Interface Links Hydrolysis State-to-Surface Potential and Particle Adhesion.
Legg, Benjamin A; Baer, Marcel D; Chun, Jaehun; Schenter, Gregory K; Huang, Shifeng; Zhang, Yuanzhong; Min, Younjin; Mundy, Christopher J; De Yoreo, James J.
Afiliación
  • Legg BA; Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
  • Baer MD; Departments of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States.
  • Chun J; Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
  • Schenter GK; Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
  • Huang S; Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
  • Zhang Y; Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States.
  • Min Y; Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States.
  • Mundy CJ; Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, California 92507, United States.
  • De Yoreo JJ; Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States.
J Am Chem Soc ; 142(13): 6093-6102, 2020 04 01.
Article en En | MEDLINE | ID: mdl-32079390
ABSTRACT
When hydrolyzable cations such as aluminum interact with solid-water interfaces, macroscopic interfacial properties (e.g., surface charge and potential) and interfacial phenomena (e.g., particle adhesion) become tightly linked with the microscopic details of ion adsorption and speciation. We use in situ atomic force microscopy to directly image individual aluminum ions at a mica-water interface and show how adsorbate populations change with pH and aluminum activity. Complementary streaming potential measurements then allow us to build a triple layer model (TLM) that links surface potentials to adsorbate populations, via equilibrium binding constants. Our model predicts that hydrolyzed species dominate the mica-water interface, even when unhydrolyzed species dominate the solution. Ab initio molecular dynamics (AIMD) simulations confirm that aluminum hydrolysis is strongly promoted at the interface. The TLM indicates that hydrolyzed adsorbates are responsible for surface-potential inversions, and we find strong correlations between hydrolyzed adsorbates and particle-adhesion forces, suggesting that these species mediate adhesion by chemical bridging.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Agua / Aluminio / Silicatos de Aluminio Tipo de estudio: Prognostic_studies Idioma: En Revista: J Am Chem Soc Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Agua / Aluminio / Silicatos de Aluminio Tipo de estudio: Prognostic_studies Idioma: En Revista: J Am Chem Soc Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos