Your browser doesn't support javascript.
loading
Manual and automated Cu-mediated radiosynthesis of the PARP inhibitor [18F]olaparib.
Guibbal, Florian; Isenegger, Patrick G; Wilson, Thomas C; Pacelli, Anna; Mahaut, Damien; Sap, Jeroen B I; Taylor, Nicholas J; Verhoog, Stefan; Preshlock, Sean; Hueting, Rebekka; Cornelissen, Bart; Gouverneur, Véronique.
Afiliación
  • Guibbal F; Chemistry Research Laboratory, University of Oxford, Oxford, UK.
  • Isenegger PG; Radiobiology Research Institute, Department of Oncology, Churchill Hospital, University of Oxford, Headington, UK.
  • Wilson TC; Chemistry Research Laboratory, University of Oxford, Oxford, UK.
  • Pacelli A; Chemistry Research Laboratory, University of Oxford, Oxford, UK.
  • Mahaut D; Radiobiology Research Institute, Department of Oncology, Churchill Hospital, University of Oxford, Headington, UK.
  • Sap JBI; Chemistry Research Laboratory, University of Oxford, Oxford, UK.
  • Taylor NJ; Chemistry Research Laboratory, University of Oxford, Oxford, UK.
  • Verhoog S; Chemistry Research Laboratory, University of Oxford, Oxford, UK.
  • Preshlock S; Chemistry Research Laboratory, University of Oxford, Oxford, UK.
  • Hueting R; Chemistry Research Laboratory, University of Oxford, Oxford, UK.
  • Cornelissen B; Radiobiology Research Institute, Department of Oncology, Churchill Hospital, University of Oxford, Headington, UK.
  • Gouverneur V; Radiobiology Research Institute, Department of Oncology, Churchill Hospital, University of Oxford, Headington, UK. bart.cornelissen@oncology.ox.ac.uk.
Nat Protoc ; 15(4): 1525-1541, 2020 04.
Article en En | MEDLINE | ID: mdl-32111986
Positron emission tomography (PET) is a diagnostic nuclear imaging modality that relies on automated protocols to prepare agents labeled with a positron-emitting radionuclide (e.g., 18F). In recent years, new reactions have appeared for the 18F-labeling of agents that are difficult to access by applying traditional radiochemistry, for example those requiring 18F incorporation into unactivated (hetero)arenes. However, automation of these new methods for translation to the clinic has progressed slowly because extensive modification of manual protocols is typically required when implementing novel 18F-labeling methodologies within automated modules. Here, we describe the workflow that led to the automated radiosynthesis of the poly(ADP-ribose) polymerase (PARP) inhibitor [18F]olaparib. First, we established a robust manual protocol to prepare [18F]olaparib from the protected N-[2-(trimethylsilyl)ethoxy]methyl (SEM) arylboronate ester precursor in a 17% ± 5% (n = 15; synthesis time, 135 min) non-decay-corrected (NDC) activity yield, with molar activity (Am) up to 34.6 GBq/µmol. Automation of the process, consisting of copper-mediated 18F-fluorodeboronation followed by deprotection, was achieved on an Eckert & Ziegler Modular-Lab radiosynthesis platform, affording [18F]olaparib in a 6% ± 5% (n = 3; synthesis time, 120 min) NDC activity yield with Am up to 319 GBq/µmol.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Ftalazinas / Piperazinas / Radioisótopos de Flúor / Cobre / Técnicas de Química Sintética / Inhibidores de Poli(ADP-Ribosa) Polimerasas Tipo de estudio: Guideline Idioma: En Revista: Nat Protoc Año: 2020 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Ftalazinas / Piperazinas / Radioisótopos de Flúor / Cobre / Técnicas de Química Sintética / Inhibidores de Poli(ADP-Ribosa) Polimerasas Tipo de estudio: Guideline Idioma: En Revista: Nat Protoc Año: 2020 Tipo del documento: Article