Your browser doesn't support javascript.
loading
Dynamics of a Key Conformational Transition in the Mechanism of Peroxiredoxin Sulfinylation.
Kriznik, Alexandre; Libiad, Marouane; Le Cordier, Hélène; Boukhenouna, Samia; Toledano, Michel B; Rahuel-Clermont, Sophie.
Afiliación
  • Kriznik A; IMoPA, Université de Lorraine, CNRS, Biopole, Campus Biologie Sante', F-54000 Nancy, France.
  • Libiad M; UMS2008 IBSLor, Biophysics and Structural Biology Core Facility, Université de Lorraine, CNRS, INSERM, Biopole, Campus Biologie Sante', F-54000 Nancy, France.
  • Le Cordier H; Laboratoire Stress oxydant et Cancer, Institute for Integrative Biology of the Cell (I2BC), UMR9198, CNRS, CEA-Saclay, Université Paris-Saclay, iBiTecS/SBIGEM, Bat 142, F-91198 Gif-sur-Yvette Cedex, France.
  • Boukhenouna S; IMoPA, Université de Lorraine, CNRS, Biopole, Campus Biologie Sante', F-54000 Nancy, France.
  • Toledano MB; IMoPA, Université de Lorraine, CNRS, Biopole, Campus Biologie Sante', F-54000 Nancy, France.
  • Rahuel-Clermont S; Laboratoire Stress oxydant et Cancer, Institute for Integrative Biology of the Cell (I2BC), UMR9198, CNRS, CEA-Saclay, Université Paris-Saclay, iBiTecS/SBIGEM, Bat 142, F-91198 Gif-sur-Yvette Cedex, France.
ACS Catal ; 10(5): 3326-3339, 2020 Mar 06.
Article en En | MEDLINE | ID: mdl-32363077
ABSTRACT
Peroxiredoxins from the Prx1 subfamily (Prx) are moonlighting peroxidases that operate in peroxide signaling and are regulated by sulfinylation. Prxs offer a major model of protein-thiol oxidative modification. They react with H2O2 to form a sulfenic acid intermediate that either engages into a disulfide bond, committing the enzyme into its peroxidase cycle, or again reacts with peroxide to produce a sulfinic acid that inactivates the enzyme. Sensitivity to sulfinylation depends on the kinetics of these two competing reactions and is critically influenced by a structural transition from a fully folded (FF) to locally unfolded (LU) conformation. Analysis of the reaction of the Tsa1 Saccharomyces cerevisiae Prx with H2O2 by Trp fluorescence-based rapid kinetics revealed a process linked to the FF/LU transition that is kinetically distinct from disulfide formation and suggested that sulfenate formation facilitates local unfolding. Use of mutants of distinctive sensitivities and of different peroxide substrates showed that sulfinylation sensitivity is not coupled to the resolving step kinetics but depends only on the sulfenic acid oxidation and FF-to-LU transition rate constants. In addition, stabilization of the active site FF conformation, the determinant of sulfinylation kinetics, is only moderately influenced by the Prx C-terminal tail dynamics that determine the FF → LU kinetics. From these two parameters, the relative sensitivities of Prxs toward hyperoxidation with different substrates can be predicted, as confirmed by in vitro and in vivo patterns of sulfinylation.

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: ACS Catal Año: 2020 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: ACS Catal Año: 2020 Tipo del documento: Article País de afiliación: Francia