Your browser doesn't support javascript.
loading
Spectroscopic Characterization of Halorhodopsin Reconstituted into Nanodisks Using Native Lipids.
Yamamoto, Ayumi; Tsukamoto, Takashi; Suzuki, Kenshiro; Hashimoto, Eri; Kobashigawa, Yoshihiro; Shibasaki, Kousuke; Uchida, Takeshi; Inagaki, Fuyuhiko; Demura, Makoto; Ishimori, Koichiro.
Afiliación
  • Yamamoto A; Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan.
  • Tsukamoto T; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.
  • Suzuki K; Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan.
  • Hashimoto E; Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan.
  • Kobashigawa Y; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.
  • Shibasaki K; Graduate School of Life Science, Hokkaido University, Sapporo, Japan.
  • Uchida T; Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan.
  • Inagaki F; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.
  • Demura M; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan. Electronic address: demura@sci.hokudai.ac.jp.
  • Ishimori K; Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan. Electronic address: koichiro@sci.hokudai.ac.jp.
Biophys J ; 118(11): 2853-2865, 2020 06 02.
Article en En | MEDLINE | ID: mdl-32396848
We successfully reconstituted single Natronomonas pharaonis halorhodopsin (NpHR) trimers into a nanodisk (ND) using the native archaeal lipid (NL) and an artificial lipid having a zwitterionic headgroup, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Incorporation of single trimeric NpHR into NDs was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis, size-exclusion chromatography, and visible circular dichroism spectroscopy. The Cl- binding affinity of NpHR in NDs using NL (NL-ND NpHR) or POPC (POPC-ND NpHR) was examined by absorption spectroscopy, showing that the Cl--releasing affinities (Kd,N↔O) of these ND-reconstituted NpHRs are more than 10 times higher than that obtained from native NpHR membrane fragments (MFs) harvested from a NpHR-overexpressing archaeal strain (MF NpHR). The photoreaction kinetics of these ND-reconstituted NpHRs revealed that the Cl- uptake was faster than that of MF NpHR. These differences in the Cl--releasing and uptake properties of ND-reconstituted NpHRs and MF NpHR may arise from suppression of protein conformational changes associated with Cl- release from the trimeric NpHR caused by ND reconstitution, conformational perturbation in the trimeric state, and loss of the trimer-trimer interactions. On the other hand, POPC-ND NpHR demonstrated accelerated Cl- uptake compared to NL-ND NpHR, suggesting that the negative charge on the archaeal membrane surface regulates the photocycle of NpHR. Although NL-ND NpHR and MF NpHR are embedded in the same lipid, the lower Cl--binding affinity at the initial state (Kd,initial) and faster recovering from the NpHR' state to the original state of the photoreaction cycle were observed for NL-ND NpHR, probably because of insufficient interactions with a chromophore in the native membrane, bacterioruberin in reconstituted NDs. Our results indicate that specific interactions of NpHR with surrounding lipids and bacterioruberin, structural flexibility of the membrane, and interactions between trimeric NpHRs may be necessary for efficient Cl- pumping.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Halorrodopsinas / Lípidos Idioma: En Revista: Biophys J Año: 2020 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Halorrodopsinas / Lípidos Idioma: En Revista: Biophys J Año: 2020 Tipo del documento: Article País de afiliación: Japón