Your browser doesn't support javascript.
loading
Simultaneous measurement of acoustic pressure and temperature using a Fabry-Perot interferometric fiber-optic cantilever sensor.
Opt Express ; 28(10): 15050-15061, 2020 May 11.
Article en En | MEDLINE | ID: mdl-32403538
ABSTRACT
A Fabry-Perot (F-P) interferometric fiber-optic cantilever sensor is presented for simultaneous measurement of acoustic pressure and temperature, which are demodulated by a single high-speed spectrometer. The acoustic pressure wave pushes the cantilever to produce periodic deflection, while the temperature deforms the sensor and causes the F-P cavity length to change slowly. The absolute length of the F-P cavity of the fiber-optic cantilever sensor is calculated rapidly by using a spectral demodulation method. The acoustic pressure and temperature are obtained by high-pass filtering and averaging the continuously measured absolute cavity length value, respectively. The experimental results show that the acoustic pressure can be detected with an ultra-high sensitivity of 198.3 nm/Pa at 1 kHz. In addition, an increase in temperature reduces the resonant frequency of the acoustic response and increases the static F-P cavity length. The temperature coefficient of the resonance frequency shift and the temperature response of the sensor are -0.49 Hz/°C and 83 nm/°C, respectively. Furthermore, through temperature compensation, the measurement error of acoustic pressure reaches ± 3%. The proposed dual parameter measurement scheme greatly simplifies the system structure and reduces the system cost.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Opt Express Asunto de la revista: OFTALMOLOGIA Año: 2020 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Opt Express Asunto de la revista: OFTALMOLOGIA Año: 2020 Tipo del documento: Article