Your browser doesn't support javascript.
loading
Electrothermal-MEMS-induced nonlinear distortion correction in photoacoustic laparoscopy.
Opt Express ; 28(10): 15300-15313, 2020 May 11.
Article en En | MEDLINE | ID: mdl-32403561
Micro-electro-mechanical systems (MEMS) scanner has significant advantages of miniature size, fast response and high stability, which is particularly applicable to photoacoustic laparoscopy (PAL). However, tilt angle-voltage curve of electrothermal MEMS shows a nonlinear character, which leads to inevitable nonlinear distortion in photoacoustic imaging. To overcome this problem, a nonlinear distortion correction was developed for the high-resolution forward-scanning electrothermal-MEMS-based PAL. The adaptive resampling method (ARM) was introduced to adaptively calibrate the projection of non-uniform scanning region to match the uniform scanning region. The correction performed low time complexity and high portability owing to the adaptive capacity of distortion decomposition in the reconstruction of physical models. Compared with the sample structure, phantom experiments demonstrated that the distortion was calibrated in all directions and the corrected image provided up to 96.82% high structural similarity in local subset. Furthermore, ARM was applied to imaging the abdominal cavity of rat and the vascular morphology was corrected in real-time display within a delay less than 2 seconds. All these results demonstrated that the nonlinear distortion correction possessed timely and effective correction in PAL, which suggested that it had the potential to employ to any other electrothermal-MEMS-based photoacoustic imaging systems for accurate and quantitative functional imaging.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Opt Express Asunto de la revista: OFTALMOLOGIA Año: 2020 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Opt Express Asunto de la revista: OFTALMOLOGIA Año: 2020 Tipo del documento: Article