Your browser doesn't support javascript.
loading
Macromolecular and electrical coupling between inner hair cells in the rodent cochlea.
Jean, Philippe; Anttonen, Tommi; Michanski, Susann; de Diego, Antonio M G; Steyer, Anna M; Neef, Andreas; Oestreicher, David; Kroll, Jana; Nardis, Christos; Pangrsic, Tina; Möbius, Wiebke; Ashmore, Jonathan; Wichmann, Carolin; Moser, Tobias.
Afiliación
  • Jean P; Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.
  • Anttonen T; Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.
  • Michanski S; Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
  • de Diego AMG; Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany.
  • Steyer AM; Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.
  • Neef A; Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.
  • Oestreicher D; Synaptic Nanophysiology Group, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany.
  • Kroll J; Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.
  • Nardis C; Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.
  • Pangrsic T; Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany.
  • Möbius W; UCL Ear Institute and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
  • Ashmore J; Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
  • Wichmann C; Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany.
  • Moser T; Neurophysics laboratory, Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen, Germany.
Nat Commun ; 11(1): 3208, 2020 06 25.
Article en En | MEDLINE | ID: mdl-32587250
ABSTRACT
Inner hair cells (IHCs) are the primary receptors for hearing. They are housed in the cochlea and convey sound information to the brain via synapses with the auditory nerve. IHCs have been thought to be electrically and metabolically independent from each other. We report that, upon developmental maturation, in mice 30% of the IHCs are electrochemically coupled in 'mini-syncytia'. This coupling permits transfer of fluorescently-labeled metabolites and macromolecular tracers. The membrane capacitance, Ca2+-current, and resting current increase with the number of dye-coupled IHCs. Dual voltage-clamp experiments substantiate low resistance electrical coupling. Pharmacology and tracer permeability rule out coupling by gap junctions and purinoceptors. 3D electron microscopy indicates instead that IHCs are coupled by membrane fusion sites. Consequently, depolarization of one IHC triggers presynaptic Ca2+-influx at active zones in the entire mini-syncytium. Based on our findings and modeling, we propose that IHC-mini-syncytia enhance sensitivity and reliability of cochlear sound encoding.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Cóclea / Células Ciliadas Auditivas Internas / Audición Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2020 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Cóclea / Células Ciliadas Auditivas Internas / Audición Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2020 Tipo del documento: Article País de afiliación: Alemania