Your browser doesn't support javascript.
loading
High CO2 concentration and iron availability determine the metabolic inventory in an Emiliania huxleyi-dominated phytoplankton community.
Mausz, Michaela A; Segovia, María; Larsen, Aud; Berger, Stella A; Egge, Jorun K; Pohnert, Georg.
Afiliación
  • Mausz MA; Department for Bioorganic Analytics, Friedrich Schiller University Jena, Lessingstr. 8, Jena, 07743, Germany.
  • Segovia M; Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstr. 11a, Jena, 07745, Germany.
  • Larsen A; School of Life Sciences, The University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, United Kingdom.
  • Berger SA; Department of Ecology, Faculty of Sciences, University of Málaga, Bulevar Louis Pasteur s/n, Málaga, 29071, Spain.
  • Egge JK; NORCE Norwegian Research Centre AS, Nygårdsgaten 112, Bergen, 5038, Norway.
  • Pohnert G; Department of Biology, University of Bergen, Thormøhlensgaten 53A/B, Bergen, 5020, Norway.
Environ Microbiol ; 22(9): 3863-3882, 2020 09.
Article en En | MEDLINE | ID: mdl-32656913
Ocean acidification (OA), a consequence of anthropogenic carbon dioxide (CO2 ) emissions, strongly impacts marine ecosystems. OA also influences iron (Fe) solubility, affecting biogeochemical and ecological processes. We investigated the interactive effects of CO2 and Fe availability on the metabolome response of a natural phytoplankton community. Using mesocosms we exposed phytoplankton to ambient (390 µatm) or future CO2 levels predicted for the year 2100 (900 µatm), combined with ambient (4.5 nM) or high (12 nM) dissolved iron (dFe). By integrating over the whole phytoplankton community, we assigned functional changes based on altered metabolite concentrations. Our study revealed the complexity of phytoplankton metabolism. Metabolic profiles showed three stages in response to treatments and phytoplankton dynamics. Metabolome changes were related to the plankton group contributing respective metabolites, explaining bloom decline and community succession. CO2 and Fe affected metabolic profiles. Most saccharides, fatty acids, amino acids and many sterols significantly correlated with the high dFe treatment at ambient pCO2 . High CO2 lowered the abundance of many metabolites irrespective of Fe. However, sugar alcohols accumulated, indicating potential stress. We demonstrate that not only altered species composition but also changes in the metabolic landscape affecting the plankton community may change as a consequence of future high-CO2 oceans.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Fitoplancton / Dióxido de Carbono / Haptophyta / Microbiota / Hierro Idioma: En Revista: Environ Microbiol Asunto de la revista: MICROBIOLOGIA / SAUDE AMBIENTAL Año: 2020 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Fitoplancton / Dióxido de Carbono / Haptophyta / Microbiota / Hierro Idioma: En Revista: Environ Microbiol Asunto de la revista: MICROBIOLOGIA / SAUDE AMBIENTAL Año: 2020 Tipo del documento: Article País de afiliación: Alemania