Your browser doesn't support javascript.
loading
A novel single-cell based method for breast cancer prognosis.
Li, Xiaomei; Liu, Lin; Goodall, Gregory J; Schreiber, Andreas; Xu, Taosheng; Li, Jiuyong; Le, Thuc D.
Afiliación
  • Li X; UniSA STEM, University of South Australia, Mawson Lakes, SA, Australia.
  • Liu L; UniSA STEM, University of South Australia, Mawson Lakes, SA, Australia.
  • Goodall GJ; Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia.
  • Schreiber A; School of Medicine, Discipline of Medicine, University of Adelaide, SA, Australia.
  • Xu T; Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia.
  • Li J; Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
  • Le TD; UniSA STEM, University of South Australia, Mawson Lakes, SA, Australia.
PLoS Comput Biol ; 16(8): e1008133, 2020 08.
Article en En | MEDLINE | ID: mdl-32833968
Breast cancer prognosis is challenging due to the heterogeneity of the disease. Various computational methods using bulk RNA-seq data have been proposed for breast cancer prognosis. However, these methods suffer from limited performances or ambiguous biological relevance, as a result of the neglect of intra-tumor heterogeneity. Recently, single cell RNA-sequencing (scRNA-seq) has emerged for studying tumor heterogeneity at cellular levels. In this paper, we propose a novel method, scPrognosis, to improve breast cancer prognosis with scRNA-seq data. scPrognosis uses the scRNA-seq data of the biological process Epithelial-to-Mesenchymal Transition (EMT). It firstly infers the EMT pseudotime and a dynamic gene co-expression network, then uses an integrative model to select genes important in EMT based on their expression variation and differentiation in different stages of EMT, and their roles in the dynamic gene co-expression network. To validate and apply the selected signatures to breast cancer prognosis, we use them as the features to build a prediction model with bulk RNA-seq data. The experimental results show that scPrognosis outperforms other benchmark breast cancer prognosis methods that use bulk RNA-seq data. Moreover, the dynamic changes in the expression of the selected signature genes in EMT may provide clues to the link between EMT and clinical outcomes of breast cancer. scPrognosis will also be useful when applied to scRNA-seq datasets of different biological processes other than EMT.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Neoplasias de la Mama / Análisis de la Célula Individual Tipo de estudio: Prognostic_studies Límite: Female / Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Neoplasias de la Mama / Análisis de la Célula Individual Tipo de estudio: Prognostic_studies Límite: Female / Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Australia