Your browser doesn't support javascript.
loading
Logistic models and artificial intelligence in the sonographic assessment of adnexal masses - a systematic review of the literature.
Grigore, Mihaela; Popovici, Razvan Mihai; Gafitanu, Dumitru; Himiniuc, Loredana; Murarasu, Mara; Micu, Romeo.
Afiliación
  • Grigore M; Department of Obstetrics and Gynecology,University of Medicine and Pharmacy "Grigore T. Popa", Iasi, Romania. mihaela.grigore@edr.ro.
  • Popovici RM; Department of Obstetrics and Gynecology University of Medicine and Pharmacy "Grigore T. Popa" Str. Universitatii 16, 700115, Iasi, Romania. razpopovici@yahoo.com.
  • Gafitanu D; Department of Obstetrics and Gynecology, University of Medicine and Pharmacy "Grigore T. Popa", Iasi, Romania. dgafit@yahoo.com.
  • Himiniuc L; University of Medicine and Pharmacy "Grigore T. Popa" Iasi, Romania, Doctoral School. loredana_m_himiniuc@yahoo.com.
  • Murarasu M; Hospita of Obstetrics and Gyecology Cuza Voda , Iasi, Romania. mara.murarasu@gmail.com.
  • Micu R; Department of Obstetrics and Gynecology, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj-Napoca. romeomicu@hotmail.com.
Med Ultrason ; 22(4): 469-475, 2020 Nov 18.
Article en En | MEDLINE | ID: mdl-32905566
Adnexal masses are common, yet challenging, in gynecological practice. Making the differential diagnosis between their benign and malignant condition is essential for optimal surgical management, but reliable pre-surgical differentiation is sometimes difficult using clinical features, ultrasound examination, or tumor markers alone. A possible way to improve the diagnosis is using artificial intelligence (AI) or logistic models developed based on compiling and processing clinical, ultrasound, and tumor marker data together. Ample research has already been conducted in this regard that medical practitioners could benefit from. In this systematic review, we present logistic models and methods using AI, chosen based on their demonstrated high performance in clinical practice. Although some external validation of these models has been performed, further prospective studies are needed in order to select the best model or to create a new, more efficient, one for the pre-surgical evaluation of ovarian masses.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Neoplasias Ováricas / Enfermedades de los Anexos Tipo de estudio: Diagnostic_studies / Observational_studies / Risk_factors_studies / Systematic_reviews Límite: Female / Humans Idioma: En Revista: Med Ultrason Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2020 Tipo del documento: Article País de afiliación: Rumanía

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Neoplasias Ováricas / Enfermedades de los Anexos Tipo de estudio: Diagnostic_studies / Observational_studies / Risk_factors_studies / Systematic_reviews Límite: Female / Humans Idioma: En Revista: Med Ultrason Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2020 Tipo del documento: Article País de afiliación: Rumanía