Your browser doesn't support javascript.
loading
Lipid-Bicelle-Coated Microfluidics for Intracellular Delivery with Reduced Fouling.
Belling, Jason N; Heidenreich, Liv K; Park, Jae Hyeon; Kawakami, Lisa M; Takahashi, Jack; Frost, Isaura M; Gong, Yao; Young, Thomas D; Jackman, Joshua A; Jonas, Steven J; Cho, Nam-Joon; Weiss, Paul S.
Afiliación
  • Belling JN; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.
  • Heidenreich LK; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.
  • Park JH; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.
  • Kawakami LM; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.
  • Takahashi J; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.
  • Frost IM; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.
  • Gong Y; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.
  • Young TD; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.
  • Jackman JA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.
  • Jonas SJ; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.
  • Cho NJ; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.
  • Weiss PS; Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States.
ACS Appl Mater Interfaces ; 12(41): 45744-45752, 2020 Oct 14.
Article en En | MEDLINE | ID: mdl-32940030
ABSTRACT
Innovative technologies for intracellular delivery are ushering in a new era for gene editing, enabling the utilization of a patient's own cells for stem cell and immunotherapies. In particular, cell-squeezing platforms provide unconventional forms of intracellular delivery, deforming cells through microfluidic constrictions to generate transient pores and to enable effective diffusion of biomolecular cargo. While these devices are promising gene-editing platforms, they require frequent maintenance due to the accumulation of cellular debris, limiting their potential for reaching the throughputs necessary for scalable cellular therapies. As these cell-squeezing technologies are improved, there is a need to develop next-generation platforms with higher throughput and longer lifespan, importantly, avoiding the buildup of cell debris and thus channel clogging. Here, we report a versatile strategy to coat the channels of microfluidic devices with lipid bilayers based on noncovalent lipid bicelle technology, which led to substantial improvements in reducing cell adhesion and protein adsorption. The antifouling properties of the lipid bilayer coating were evaluated, including membrane uniformity, passivation against nonspecific protein adsorption, and inhibition of cell attachment against multiple cell types. This surface functionalization approach was applied to coat constricted microfluidic channels for the intracellular delivery of fluorescently labeled dextran and plasmid DNA, demonstrating significant reductions in the accumulation of cell debris. Taken together, our work demonstrates that lipid bicelles are a useful tool to fabricate antifouling lipid bilayer coatings in cell-squeezing devices, resulting in reduced nonspecific fouling and cell clogging to improve performance.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Dispositivos Laboratorio en un Chip / Incrustaciones Biológicas / Membrana Dobles de Lípidos Límite: Humans Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Dispositivos Laboratorio en un Chip / Incrustaciones Biológicas / Membrana Dobles de Lípidos Límite: Humans Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos