Your browser doesn't support javascript.
loading
Epiclomal: Probabilistic clustering of sparse single-cell DNA methylation data.
P E de Souza, Camila; Andronescu, Mirela; Masud, Tehmina; Kabeer, Farhia; Biele, Justina; Laks, Emma; Lai, Daniel; Ye, Patricia; Brimhall, Jazmine; Wang, Beixi; Su, Edmund; Hui, Tony; Cao, Qi; Wong, Marcus; Moksa, Michelle; Moore, Richard A; Hirst, Martin; Aparicio, Samuel; Shah, Sohrab P.
Afiliación
  • P E de Souza C; Department of Statistical and Actuarial Sciences, University of Western Ontario, London, ON, Canada.
  • Andronescu M; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.
  • Masud T; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
  • Kabeer F; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.
  • Biele J; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
  • Laks E; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.
  • Lai D; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
  • Ye P; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.
  • Brimhall J; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.
  • Wang B; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
  • Su E; Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC, Canada.
  • Hui T; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.
  • Cao Q; Department of Statistics and Department of Computer Science, University of British Columbia, Vancouver, BC, Canada.
  • Wong M; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.
  • Moksa M; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.
  • Moore RA; Department of Microbiology and Immunology and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
  • Hirst M; Department of Microbiology and Immunology and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
  • Aparicio S; Department of Microbiology and Immunology and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
  • Shah SP; Department of Microbiology and Immunology and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
PLoS Comput Biol ; 16(9): e1008270, 2020 09.
Article en En | MEDLINE | ID: mdl-32966276
We present Epiclomal, a probabilistic clustering method arising from a hierarchical mixture model to simultaneously cluster sparse single-cell DNA methylation data and impute missing values. Using synthetic and published single-cell CpG datasets, we show that Epiclomal outperforms non-probabilistic methods and can handle the inherent missing data characteristic that dominates single-cell CpG genome sequences. Using newly generated single-cell 5mCpG sequencing data, we show that Epiclomal discovers sub-clonal methylation patterns in aneuploid tumour genomes, thus defining epiclones that can match or transcend copy number-determined clonal lineages and opening up an important form of clonal analysis in cancer. Epiclomal is written in R and Python and is available at https://github.com/shahcompbio/Epiclomal.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Metilación de ADN / Análisis de la Célula Individual Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Metilación de ADN / Análisis de la Célula Individual Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Canadá