Your browser doesn't support javascript.
loading
Pathogenic gene prediction based on network embedding.
Liu, Yang; Guo, Yuchen; Liu, Xiaoyan; Wang, Chunyu; Guo, Maozu.
Afiliación
  • Liu Y; School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.
  • Guo Y; School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.
  • Liu X; School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.
  • Wang C; School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.
  • Guo M; School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing, China.
Brief Bioinform ; 22(4)2021 07 20.
Article en En | MEDLINE | ID: mdl-33367541
In disease research, the study of gene-disease correlation has always been an important topic. With the emergence of large-scale connected data sets in biology, we use known correlations between the entities, which may be from different sets, to build a biological heterogeneous network and propose a new network embedded representation algorithm to calculate the correlation between disease and genes, using the correlation score to predict pathogenic genes. Then, we conduct several experiments to compare our method to other state-of-the-art methods. The results reveal that our method achieves better performance than the traditional methods.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Algoritmos / Biología Computacional / Redes Reguladoras de Genes Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Algoritmos / Biología Computacional / Redes Reguladoras de Genes Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: China