Your browser doesn't support javascript.
loading
Self-aligned sequential lateral field non-uniformities over channel depth for high throughput dielectrophoretic cell deflection.
Huang, XuHai; Torres-Castro, Karina; Varhue, Walter; Salahi, Armita; Rasin, Ahmed; Honrado, Carlos; Brown, Audrey; Guler, Jennifer; Swami, Nathan S.
Afiliación
  • Huang X; Electrical & Computer Engineering, University of Virginia, Charlottesville, USA. nswami@virginia.edu.
  • Torres-Castro K; Electrical & Computer Engineering, University of Virginia, Charlottesville, USA. nswami@virginia.edu.
  • Varhue W; Electrical & Computer Engineering, University of Virginia, Charlottesville, USA. nswami@virginia.edu.
  • Salahi A; Electrical & Computer Engineering, University of Virginia, Charlottesville, USA. nswami@virginia.edu.
  • Rasin A; Electrical & Computer Engineering, University of Virginia, Charlottesville, USA. nswami@virginia.edu.
  • Honrado C; Electrical & Computer Engineering, University of Virginia, Charlottesville, USA. nswami@virginia.edu.
  • Brown A; Biology, University of Virginia, Charlottesville, USA.
  • Guler J; Biology, University of Virginia, Charlottesville, USA.
  • Swami NS; Electrical & Computer Engineering, University of Virginia, Charlottesville, USA. nswami@virginia.edu and Chemistry, University of Virginia, Charlottesville, USA.
Lab Chip ; 21(5): 835-843, 2021 03 09.
Article en En | MEDLINE | ID: mdl-33532812
ABSTRACT
Dielectrophoresis (DEP) enables the separation of cells based on subtle subcellular phenotypic differences by controlling the frequency of the applied field. However, current electrode-based geometries extend over a limited depth of the sample channel, thereby reducing the throughput of the manipulated sample (sub-µL min-1 flow rates and <105 cells per mL). We present a flow through device with self-aligned sequential field non-uniformities extending laterally across the sample channel width (100 µm) that are created by metal patterned over the entire depth (50 µm) of the sample channel sidewall using a single lithography step. This enables single-cell streamlines to undergo progressive DEP deflection with minimal dependence on the cell starting position, its orientation versus the field and intercellular interactions. Phenotype-specific cell separation is validated (>µL min-1 flow and >106 cells per mL) using heterogeneous samples of healthy and glutaraldehyde-fixed red blood cells, with single-cell impedance cytometry showing that the DEP collected fractions are intact and exhibit electrical opacity differences consistent with their capacitance-based DEP crossover frequency. This geometry can address the vision of an "all electric" selective cell isolation and cytometry system for quantifying phenotypic heterogeneity of cellular systems.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Técnicas Analíticas Microfluídicas Idioma: En Revista: Lab Chip Asunto de la revista: BIOTECNOLOGIA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Técnicas Analíticas Microfluídicas Idioma: En Revista: Lab Chip Asunto de la revista: BIOTECNOLOGIA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos