Your browser doesn't support javascript.
loading
Ephaptic coupling in white matter fibre bundles modulates axonal transmission delays.
Schmidt, Helmut; Hahn, Gerald; Deco, Gustavo; Knösche, Thomas R.
Afiliación
  • Schmidt H; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
  • Hahn G; Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.
  • Deco G; Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.
  • Knösche TR; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
PLoS Comput Biol ; 17(2): e1007858, 2021 02.
Article en En | MEDLINE | ID: mdl-33556058
ABSTRACT
Axonal connections are widely regarded as faithful transmitters of neuronal signals with fixed delays. The reasoning behind this is that extracellular potentials caused by spikes travelling along axons are too small to have an effect on other axons. Here we devise a computational framework that allows us to study the effect of extracellular potentials generated by spike volleys in axonal fibre bundles on axonal transmission delays. We demonstrate that, although the extracellular potentials generated by single spikes are of the order of microvolts, the collective extracellular potential generated by spike volleys can reach several millivolts. As a consequence, the resulting depolarisation of the axonal membranes increases the velocity of spikes, and therefore reduces axonal delays between brain areas. Driving a neural mass model with such spike volleys, we further demonstrate that only ephaptic coupling can explain the reduction of stimulus latencies with increased stimulus intensities, as observed in many psychological experiments.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Axones / Sustancia Blanca / Modelos Neurológicos Límite: Animals / Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Axones / Sustancia Blanca / Modelos Neurológicos Límite: Animals / Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: Alemania