Your browser doesn't support javascript.
loading
Artificial intelligence-assisted reduction in patients' waiting time for outpatient process: a retrospective cohort study.
Li, Xiaoqing; Tian, Dan; Li, Weihua; Dong, Bin; Wang, Hansong; Yuan, Jiajun; Li, Biru; Shi, Lei; Lin, Xulin; Zhao, Liebin; Liu, Shijian.
Afiliación
  • Li X; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Tian D; Child Health Advocacy Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China.
  • Li W; Division of Hospital Management, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China.
  • Dong B; Division of Hospital Management, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China.
  • Wang H; Division of Hospital Management, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China.
  • Yuan J; Pediatric AI clinical Application and Research Center, Shanghai Children's Medical Center, Shanghai, China.
  • Li B; Shanghai Engineering Research Center of Intelligence Pediatrics (SERCIP), Shanghai, China.
  • Shi L; Child Health Advocacy Institute, China Hospital Development Institute of Shanghai Jiao Tong University, Shanghai, China.
  • Lin X; Division of Hospital Management, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China.
  • Zhao L; Pediatric AI clinical Application and Research Center, Shanghai Children's Medical Center, Shanghai, China.
  • Liu S; Shanghai Engineering Research Center of Intelligence Pediatrics (SERCIP), Shanghai, China.
BMC Health Serv Res ; 21(1): 237, 2021 Mar 17.
Article en En | MEDLINE | ID: mdl-33731096
BACKGROUND: Many studies suggest that patient satisfaction is significantly negatively correlated with the waiting time. A well-designed healthcare system should not keep patients waiting too long for an appointment and consultation. However, in China, patients spend notable time waiting, and the actual time spent on diagnosis and treatment in the consulting room is comparatively less. METHODS: We developed an artificial intelligence (AI)-assisted module and name it XIAO YI. It could help outpatients automatically order imaging examinations or laboratory tests based on their chief complaints. Thus, outpatients could get examined or tested before they went to see the doctor. People who saw the doctor in the traditional way were allocated to the conventional group, and those who used XIAO YI were assigned to the AI-assisted group. We conducted a retrospective cohort study from August 1, 2019 to January 31, 2020. Propensity score matching was used to balance the confounding factor between the two groups. And waiting time was defined as the time from registration to preparation for laboratory tests or imaging examinations. The total cost included the registration fee, test fee, examination fee, and drug fee. We used Wilcoxon rank-sum test to compare the differences in time and cost. The statistical significance level was set at 0.05 for two sides. RESULTS: Twelve thousand and three hundred forty-two visits were recruited, consisting of 6171 visits in the conventional group and 6171 visits in the AI-assisted group. The median waiting time was 0.38 (interquartile range: 0.20, 1.33) hours for the AI-assisted group compared with 1.97 (0.76, 3.48) hours for the conventional group (p < 0.05). The total cost was 335.97 (interquartile range: 244.80, 437.60) CNY (Chinese Yuan) for the AI-assisted group and 364.58 (249.70, 497.76) CNY for the conventional group (p < 0.05). CONCLUSIONS: Using XIAO YI can significantly reduce the waiting time of patients, and thus, improve the outpatient service process of hospitals.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Pacientes Ambulatorios / Listas de Espera Tipo de estudio: Etiology_studies / Observational_studies Límite: Humans País/Región como asunto: Asia Idioma: En Revista: BMC Health Serv Res Asunto de la revista: PESQUISA EM SERVICOS DE SAUDE Año: 2021 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Pacientes Ambulatorios / Listas de Espera Tipo de estudio: Etiology_studies / Observational_studies Límite: Humans País/Región como asunto: Asia Idioma: En Revista: BMC Health Serv Res Asunto de la revista: PESQUISA EM SERVICOS DE SAUDE Año: 2021 Tipo del documento: Article País de afiliación: China