Your browser doesn't support javascript.
loading
The Enzymes of the Rifamycin Antibiotic Resistome.
Surette, Matthew D; Spanogiannopoulos, Peter; Wright, Gerard D.
Afiliación
  • Surette MD; M.G. DeGroote Institute for Infectious Disease Research, David Braley Center for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 3Z5, Canada.
  • Spanogiannopoulos P; M.G. DeGroote Institute for Infectious Disease Research, David Braley Center for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 3Z5, Canada.
  • Wright GD; M.G. DeGroote Institute for Infectious Disease Research, David Braley Center for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 3Z5, Canada.
Acc Chem Res ; 54(9): 2065-2075, 2021 05 04.
Article en En | MEDLINE | ID: mdl-33877820
ABSTRACT
Rifamycin antibiotics include the WHO essential medicines rifampin, rifabutin, and rifapentine. These are semisynthetic derivatives of the natural product rifamycins, originally isolated from the soil bacterium Amycolatopsis rifamycinica. These antibiotics are primarily used to treat mycobacterial infections, including tuberculosis. Rifamycins act by binding to the ß-subunit of bacterial RNA polymerase, inhibiting transcription, which results in cell death. These antibiotics consist of a naphthalene core spanned by a polyketide ansa bridge. This structure presents a unique 3D configuration that engages RNA polymerase through a series of hydrogen bonds between hydroxyl groups linked to the naphthalene core and C21 and C23 of the ansa bridge. This binding occurs not in the enzyme active site where template-directed RNA synthesis occurs but instead in the RNA exit tunnel, thereby blocking productive formation of full-length RNA. In their clinical use to treat tuberculosis, resistance to rifamycin antibiotics arises principally from point mutations in RNA polymerase that decrease the antibiotic's affinity for the binding site in the RNA exit tunnel. In contrast, the rifamycin resistome of environmental mycobacteria and actinomycetes is much richer and diverse. In these organisms, rifamycin resistance includes many different enzymatic mechanisms that modify and alter the antibiotic directly, thereby inactivating it. These enzymes include ADP ribosyltransferases, glycosyltransferases, phosphotransferases, and monooxygenases.ADP ribosyltransferases catalyze group transfer of ADP ribose from the cofactor NAD+, which is more commonly deployed for metabolic redox reactions. ADP ribose is transferred to the hydroxyl linked to C23 of the antibiotic, thereby sterically blocking productive interaction with RNA polymerase. Like ADP ribosyltransferases, rifamycin glycosyl transferases also modify the hydroxyl of position C23 of rifamycins, transferring a glucose moiety from the donor molecule UDP-glucose. Unlike other antibiotic resistance kinases that transfer the γ-phosphate of ATP to inactivate antibiotics such as aminoglycosides or macrolides, rifamycin phosphotransferases are ATP-dependent dikinases. These enzymes transfer the ß-phosphate of ATP to the C21 hydroxyl of the rifamycin ansa bridge. The result is modification of a critical RNA polymerase binding group that blocks productive complex formation. On the other hand, rifamycin monooxygenases are FAD-dependent enzymes that hydroxylate the naphthoquinone core. The result of this modification is untethering of the ansa chain from the naphthyl moiety, disrupting the essential 3D shape necessary for productive RNA polymerase binding and inhibition that leads to cell death.All of these enzymes have homologues in bacterial metabolism that either are their direct precursors or share common ancestors to the resistance enzyme. The diversity of these resistance mechanisms, often redundant in individual bacterial isolates, speaks to the importance of protecting RNA polymerase from these compounds and validates this enzyme as a critical antibiotic target.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Rifamicinas / ARN Polimerasa Dependiente del ARN / Antibacterianos Idioma: En Revista: Acc Chem Res Año: 2021 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Rifamicinas / ARN Polimerasa Dependiente del ARN / Antibacterianos Idioma: En Revista: Acc Chem Res Año: 2021 Tipo del documento: Article País de afiliación: Canadá