Your browser doesn't support javascript.
loading
Estimating heritability and its enrichment in tissue-specific gene sets in admixed populations.
Luo, Yang; Li, Xinyi; Wang, Xin; Gazal, Steven; Mercader, Josep Maria; Neale, Benjamin M; Florez, Jose C; Auton, Adam; Price, Alkes L; Finucane, Hilary K; Raychaudhuri, Soumya.
Afiliación
  • Luo Y; Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
  • Li X; Division of Rheumatology, Immunology, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
  • Wang X; Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
  • Gazal S; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
  • Mercader JM; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Neale BM; Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
  • Florez JC; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
  • Auton A; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Price AL; 23andMe, Inc., Mountain View, California, USA.
  • Finucane HK; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Raychaudhuri S; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Hum Mol Genet ; 30(16): 1521-1534, 2021 07 28.
Article en En | MEDLINE | ID: mdl-33987664
It is important to study the genetics of complex traits in diverse populations. Here, we introduce covariate-adjusted linkage disequilibrium (LD) score regression (cov-LDSC), a method to estimate SNP-heritability (${\boldsymbol{h}}_{\boldsymbol{g}}^{\mathbf{2}})$ and its enrichment in homogenous and admixed populations with summary statistics and in-sample LD estimates. In-sample LD can be estimated from a subset of the genome-wide association studies samples, allowing our method to be applied efficiently to very large cohorts. In simulations, we show that unadjusted LDSC underestimates ${\boldsymbol{h}}_{\boldsymbol{g}}^{\mathbf{2}}$ by 10-60% in admixed populations; in contrast, cov-LDSC is robustly accurate. We apply cov-LDSC to genotyping data from 8124 individuals, mostly of admixed ancestry, from the Slim Initiative in Genomic Medicine for the Americas study, and to approximately 161 000 Latino-ancestry individuals, 47 000 African American-ancestry individuals and 135 000 European-ancestry individuals, as classified by 23andMe. We estimate ${\boldsymbol{h}}_{\boldsymbol{g}}^{\mathbf{2}}$ and detect heritability enrichment in three quantitative and five dichotomous phenotypes, making this, to our knowledge, the most comprehensive heritability-based analysis of admixed individuals to date. Most traits have high concordance of ${\boldsymbol{h}}_{\boldsymbol{g}}^{\mathbf{2}}$ and consistent tissue-specific heritability enrichment among different populations. However, for age at menarche, we observe population-specific heritability estimates of ${\boldsymbol{h}}_{\boldsymbol{g}}^{\mathbf{2}}$. We observe consistent patterns of tissue-specific heritability enrichment across populations; for example, in the limbic system for BMI, the per-standardized-annotation effect size $ \tau $* is 0.16 ± 0.04, 0.28 ± 0.11 and 0.18 ± 0.03 in the Latino-, African American- and European-ancestry populations, respectively. Our approach is a powerful way to analyze genetic data for complex traits from admixed populations.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Desequilibrio de Ligamiento / Herencia Multifactorial / Estudio de Asociación del Genoma Completo / Genética de Población Límite: Humans Idioma: En Revista: Hum Mol Genet Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Desequilibrio de Ligamiento / Herencia Multifactorial / Estudio de Asociación del Genoma Completo / Genética de Población Límite: Humans Idioma: En Revista: Hum Mol Genet Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos