Your browser doesn't support javascript.
loading
A bidirectional corticoamygdala circuit for the encoding and retrieval of detailed reward memories.
Sias, Ana C; Morse, Ashleigh K; Wang, Sherry; Greenfield, Venuz Y; Goodpaster, Caitlin M; Wrenn, Tyler M; Wikenheiser, Andrew M; Holley, Sandra M; Cepeda, Carlos; Levine, Michael S; Wassum, Kate M.
Afiliación
  • Sias AC; Department of Psychology, University of California, Los Angeles, Los Angeles, United States.
  • Morse AK; Department of Psychology, University of California, Los Angeles, Los Angeles, United States.
  • Wang S; Department of Psychology, University of California, Los Angeles, Los Angeles, United States.
  • Greenfield VY; Department of Psychology, University of California, Los Angeles, Los Angeles, United States.
  • Goodpaster CM; Department of Psychology, University of California, Los Angeles, Los Angeles, United States.
  • Wrenn TM; Department of Psychology, University of California, Los Angeles, Los Angeles, United States.
  • Wikenheiser AM; Department of Psychology, University of California, Los Angeles, Los Angeles, United States.
  • Holley SM; Brain Research Institute, University of California, Los Angeles, Los Angeles, United States.
  • Cepeda C; Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, United States.
  • Levine MS; Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States.
  • Wassum KM; Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States.
Elife ; 102021 06 18.
Article en En | MEDLINE | ID: mdl-34142660
Adaptive reward-related decision making often requires accurate and detailed representation of potential available rewards. Environmental reward-predictive stimuli can facilitate these representations, allowing one to infer which specific rewards might be available and choose accordingly. This process relies on encoded relationships between the cues and the sensory-specific details of the rewards they predict. Here, we interrogated the function of the basolateral amygdala (BLA) and its interaction with the lateral orbitofrontal cortex (lOFC) in the ability to learn such stimulus-outcome associations and use these memories to guide decision making. Using optical recording and inhibition approaches, Pavlovian cue-reward conditioning, and the outcome-selective Pavlovian-to-instrumental transfer (PIT) test in male rats, we found that the BLA is robustly activated at the time of stimulus-outcome learning and that this activity is necessary for sensory-specific stimulus-outcome memories to be encoded, so they can subsequently influence reward choices. Direct input from the lOFC was found to support the BLA in this function. Based on prior work, activity in BLA projections back to the lOFC was known to support the use of stimulus-outcome memories to influence decision making. By multiplexing optogenetic and chemogenetic inhibition we performed a serial circuit disconnection and found that the lOFC→BLA and BLA→lOFC pathways form a functional circuit regulating the encoding (lOFC→BLA) and subsequent use (BLA→lOFC) of the stimulus-dependent, sensory-specific reward memories that are critical for adaptive, appetitive decision making.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Recompensa / Corteza Prefrontal / Complejo Nuclear Basolateral / Memoria Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Elife Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Recompensa / Corteza Prefrontal / Complejo Nuclear Basolateral / Memoria Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Elife Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos