Your browser doesn't support javascript.
loading
Chain-End Effects on Supramolecular Poly(ethylene glycol) Polymers.
Brás, Ana; Arizaga, Ana; Agirre, Uxue; Dorau, Marie; Houston, Judith; Radulescu, Aurel; Kruteva, Margarita; Pyckhout-Hintzen, Wim; Schmidt, Annette M.
Afiliación
  • Brás A; Institute of Physical Chemistry, University of Cologne, 50939 Cologne, Germany.
  • Arizaga A; Institute of Physical Chemistry, University of Cologne, 50939 Cologne, Germany.
  • Agirre U; Institute of Physical Chemistry, University of Cologne, 50939 Cologne, Germany.
  • Dorau M; Institute of Physical Chemistry, University of Cologne, 50939 Cologne, Germany.
  • Houston J; Jülich Centre for Neutron Science (JCNS-1) at Heinz Maier Leibnitz-Zentrum (MLZ), Forschungszentrum Jülich GmbH, 85748 Garching, Germany.
  • Radulescu A; Jülich Centre for Neutron Science (JCNS-1) at Heinz Maier Leibnitz-Zentrum (MLZ), Forschungszentrum Jülich GmbH, 85748 Garching, Germany.
  • Kruteva M; Jülich Centre for Neutron Science (JCNS-1), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
  • Pyckhout-Hintzen W; Jülich Centre for Neutron Science (JCNS-1), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
  • Schmidt AM; Institute of Physical Chemistry, University of Cologne, 50939 Cologne, Germany.
Polymers (Basel) ; 13(14)2021 Jul 07.
Article en En | MEDLINE | ID: mdl-34300992
ABSTRACT
In this work we present a fundamental analysis based on small-angle scattering, linear rheology and differential scanning calorimetry (DSC) experiments of the role of different hydrogen bonding (H-bonding) types on the structure and dynamics of chain-end modified poly(ethylene glycol) (PEG) in bulk. As such bifunctional PEG with a molar mass below the entanglement mass Me is symmetrically end-functionalized with three different hydrogen bonding (H-bonding) groups thymine-1-acetic acid (thy), diamino-triazine (dat) and 2-ureido-4[1H]-pyrimidinone (upy). A linear block copolymer structure and a Newtonian-like dynamics is observed for PEG-thy/dat while results for PEG-upy structure and dynamics reveal a sphere and a network-like behavior, respectively. These observations are concomitant with an increase of the Flory-Huggins interaction parameter from PEG-thy/dat to PEG-upy that is used to quantify the difference between the H-bonding types. The upy association into spherical clusters is established by the Percus-Yevick approximation that models the inter-particle structure factor for PEG-upy. Moreover, the viscosity study reveals for PEG-upy a shear thickening behavior interpreted in terms of the free path model and related to the time for PEG-upy to dissociate from the upy clusters, seen as virtual crosslinks of the formed network. Moreover, a second relaxation time of different nature is also obtained from the complex shear modulus measurements of PEG-upy by the inverse of the angular frequency where G' and G'' crosses from the network-like to glass-like transition relaxation time, which is related to the segmental friction of PEG-upy polymeric network strands. In fact, not only do PEG-thy/dat and PEG-upy have different viscoelastic properties, but the relaxation times found for PEG-upy are much slower than the ones for PEG-thy/dat. However, the activation energy related to the association dynamics is very similar for both PEG-thy/dat and PEG-upy. Concerning the segmental dynamics, the glass transition temperature obtained from both rheological and calorimetric analysis is similar and increases for PEG-upy while for PEG-thy/dat is almost independent of association behavior. Our results show how supramolecular PEG properties vary by modifying the H-bonding association type and changing the molecular Flory-Huggins interaction parameter, which can be further explored for possible applications.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Polymers (Basel) Año: 2021 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Polymers (Basel) Año: 2021 Tipo del documento: Article País de afiliación: Alemania