Your browser doesn't support javascript.
loading
Pseudoreplication in genomic-scale data sets.
Waples, Robin S; Waples, Ryan K; Ward, Eric J.
Afiliación
  • Waples RS; NOAA Fisheries, Northwest Fisheries Science Center, Seattle, WA, USA.
  • Waples RK; Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen, Denmark.
  • Ward EJ; NOAA Fisheries, Northwest Fisheries Science Center, Seattle, WA, USA.
Mol Ecol Resour ; 22(2): 503-518, 2022 Feb.
Article en En | MEDLINE | ID: mdl-34351073
ABSTRACT
In genomic-scale data sets, loci are closely packed within chromosomes and hence provide correlated information. Averaging across loci as if they were independent creates pseudoreplication, which reduces the effective degrees of freedom (df') compared to the nominal degrees of freedom, df. This issue has been known for some time, but consequences have not been systematically quantified across the entire genome. Here, we measured pseudoreplication (quantified by the ratio df'/df) for a common metric of genetic differentiation (FST ) and a common measure of linkage disequilibrium between pairs of loci (r2 ). Based on data simulated using models (SLiM and msprime) that allow efficient forward-in-time and coalescent simulations while precisely controlling population pedigrees, we estimated df' and df'/df by measuring the rate of decline in the variance of mean FST and mean r2 as more loci were used. For both indices, df' increases with Ne and genome size, as expected. However, even for large Ne and large genomes, df' for mean r2 plateaus after a few thousand loci, and a variance components analysis indicates that the limiting factor is uncertainty associated with sampling individuals rather than genes. Pseudoreplication is less extreme for FST , but df'/df ≤0.01 can occur in data sets using tens of thousands of loci. Commonly-used block-jackknife methods consistently overestimated var (FST ), producing very conservative confidence intervals. Predicting df' based on our modelling results as a function of Ne , L, S, and genome size provides a robust way to quantify precision associated with genomic-scale data sets.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Genómica / Modelos Genéticos Tipo de estudio: Prognostic_studies Idioma: En Revista: Mol Ecol Resour Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Genómica / Modelos Genéticos Tipo de estudio: Prognostic_studies Idioma: En Revista: Mol Ecol Resour Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos