Your browser doesn't support javascript.
loading
Efficient conversion of phytosterols into 4-androstene-3,17-dione and its C1,2-dehydrogenized and 9α-hydroxylated derivatives by engineered Mycobacteria.
Li, Xin; Chen, Tian; Peng, Fei; Song, Shikui; Yu, Jingpeng; Sidoine, Douanla Njimeli; Cheng, Xiyao; Huang, Yongqi; He, Yijun; Su, Zhengding.
Afiliación
  • Li X; Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.
  • Chen T; Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.
  • Peng F; Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.
  • Song S; Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.
  • Yu J; Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.
  • Sidoine DN; Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.
  • Cheng X; Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.
  • Huang Y; Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.
  • He Y; Hubei Goto Biotech Inc., No. 1 Baiguoshu Road, Shuidu Industrial Park, Danjiangkou, 442700, Hubei, China. heyijun@gotochem.com.
  • Su Z; Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China. zhengdingsu@hbut.edu.cn.
Microb Cell Fact ; 20(1): 158, 2021 Aug 16.
Article en En | MEDLINE | ID: mdl-34399754
ABSTRACT
4-Androstene-3,17-dione (4-AD), 1,4-androstadiene-3,17-dione (ADD) and 9α-hydroxyl-4-androstene-3,17-dione (9OH-AD), which are important starting compounds for the synthesis of steroidal medicines, can be biosynthetically transformed from phytosterols by Mycobacterium strains. Genomic and metabolic analyses have revealed that currently available 4-AD-producing strains maintain the ability to convert 4-AD to ADD and 9OH-AD via 3-ketosteroid-1,2-dehydrogenase (KstD) and 3-ketosteroid-9α-hydroxylase (Ksh), not only lowering the production yield of 4-AD but also hampering its purification refinement. Additionally, these 4-AD industrial strains are excellent model strains to construct ADD- and 9OH-AD-producing strains. We recently found that Mycobacterium neoaurum HGMS2, a 4-AD-producing strain, harbored fewer kstd and ksh genes through whole-genomic and enzymatic analyses, compared with other strains (Wang et al. in Microbial Cell Fact 19187, 2020). In this study, we attempted to construct an efficient 4-AD-producing strain by knocking out the kstd and ksh genes from the M. neoaurum HGMS2 strain. Next, we used kstd- and ksh-default HGMS2 mutants as templates to construct ADD- and 9OH-AD-producing strains by knocking in active kstd and ksh genes, respectively. We found that after knocking out its endogenous kstd and ksh genes, one of these knockout mutants, HGMS2Δkstd211 + ΔkshB122, showed a 20% increase in the rate of phytosterol to 4-AD conversion, compared relative to the wild-type strain and an increase in 4-AD yield to 38.3 g/L in pilot-scale fermentation. Furthermore, we obtained the ADD- and 9OH-AD-producing strains, HGMS2kstd2 + Δkstd211+ΔkshB122 and HGMS2kshA51 + Δkstd211+ΔkshA226, by knocking in heterogenous active kstd and ksh genes to selected HGMS2 mutants, respectively. During pilot-scale fermentation, the conversion rates of the ADD- and 9OH-AD-producing mutants transforming phytosterol were 42.5 and 40.3%, respectively, and their yields reached 34.2 and 37.3 g/L, respectively. Overall, our study provides efficient strains for the production of 4-AD, ADD and 9OH-AD for the pharmaceutical industry and provides insights into the metabolic engineering of the HGMS2 strain to produce other important steroidal compounds.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Fitosteroles / Androstenodiona / Mycobacterium Idioma: En Revista: Microb Cell Fact Asunto de la revista: BIOTECNOLOGIA / MICROBIOLOGIA Año: 2021 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Fitosteroles / Androstenodiona / Mycobacterium Idioma: En Revista: Microb Cell Fact Asunto de la revista: BIOTECNOLOGIA / MICROBIOLOGIA Año: 2021 Tipo del documento: Article País de afiliación: China