Your browser doesn't support javascript.
loading
Detecting forest response to droughts with global observations of vegetation water content.
Konings, Alexandra G; Saatchi, Sassan S; Frankenberg, Christian; Keller, Michael; Leshyk, Victor; Anderegg, William R L; Humphrey, Vincent; Matheny, Ashley M; Trugman, Anna; Sack, Lawren; Agee, Elizabeth; Barnes, Mallory L; Binks, Oliver; Cawse-Nicholson, Kerry; Christoffersen, Bradley O; Entekhabi, Dara; Gentine, Pierre; Holtzman, Nataniel M; Katul, Gabriel G; Liu, Yanlan; Longo, Marcos; Martinez-Vilalta, Jordi; McDowell, Nate; Meir, Patrick; Mencuccini, Maurizio; Mrad, Assaad; Novick, Kimberly A; Oliveira, Rafael S; Siqueira, Paul; Steele-Dunne, Susan C; Thompson, David R; Wang, Yujie; Wehr, Richard; Wood, Jeffrey D; Xu, Xiangtao; Zuidema, Pieter A.
Afiliación
  • Konings AG; Stanford University, Stanford, CA, USA.
  • Saatchi SS; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
  • Frankenberg C; California Institute of Technology, Pasadena, CA, USA.
  • Keller M; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
  • Leshyk V; United States Forest Service, Washington, DC, USA.
  • Anderegg WRL; Northern Arizona University, Flagstaff, AZ, USA.
  • Humphrey V; University of Utah, Salt Lake City, UT, USA.
  • Matheny AM; California Institute of Technology, Pasadena, CA, USA.
  • Trugman A; University of Texas - Austin, Austin, TX, USA.
  • Sack L; University of California - Santa Barbara, Santa Barbara, CA, USA.
  • Agee E; University of California - Los Angeles, Los Angeles, CA, USA.
  • Barnes ML; Oak Ridge National Laboratory, Oak Ridge, TN, USA.
  • Binks O; Indiana University-Bloomington, Bloomington, IN, USA.
  • Cawse-Nicholson K; The Australian National University, Canberra, ACT, Australia.
  • Christoffersen BO; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
  • Entekhabi D; University of Texas - Rio Grande, Edinburg, TX, USA.
  • Gentine P; Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Holtzman NM; Columbia University, New York, NY, USA.
  • Katul GG; Stanford University, Stanford, CA, USA.
  • Liu Y; Duke University, Durham, NC, USA.
  • Longo M; The Ohio State University, Columbus, OH, USA.
  • Martinez-Vilalta J; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
  • McDowell N; Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Barcelona, Spain.
  • Meir P; Universitat Autònoma de Barcelona, Barcelona, Spain.
  • Mencuccini M; Pacific Northwest National Laboratory, Richland, WA, USA.
  • Mrad A; Washington State University, Pullman, WA, USA.
  • Novick KA; The Australian National University, Canberra, ACT, Australia.
  • Oliveira RS; University of Edinburgh, Edinburgh, UK.
  • Siqueira P; Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Barcelona, Spain.
  • Steele-Dunne SC; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
  • Thompson DR; University of California - Irvine, Irvine, CA, USA.
  • Wang Y; Indiana University-Bloomington, Bloomington, IN, USA.
  • Wehr R; University of Campinas, Campinas, Brazil.
  • Wood JD; University of Massachusetts - Amherst, Amherst, MA, USA.
  • Xu X; Delft University of Technology, Delft, The Netherlands.
  • Zuidema PA; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
Glob Chang Biol ; 27(23): 6005-6024, 2021 12.
Article en En | MEDLINE | ID: mdl-34478589
Droughts in a warming climate have become more common and more extreme, making understanding forest responses to water stress increasingly pressing. Analysis of water stress in trees has long focused on water potential in xylem and leaves, which influences stomatal closure and water flow through the soil-plant-atmosphere continuum. At the same time, changes of vegetation water content (VWC) are linked to a range of tree responses, including fluxes of water and carbon, mortality, flammability, and more. Unlike water potential, which requires demanding in situ measurements, VWC can be retrieved from remote sensing measurements, particularly at microwave frequencies using radar and radiometry. Here, we highlight key frontiers through which VWC has the potential to significantly increase our understanding of forest responses to water stress. To validate remote sensing observations of VWC at landscape scale and to better relate them to data assimilation model parameters, we introduce an ecosystem-scale analog of the pressure-volume curve, the non-linear relationship between average leaf or branch water potential and water content commonly used in plant hydraulics. The sources of variability in these ecosystem-scale pressure-volume curves and their relationship to forest response to water stress are discussed. We further show to what extent diel, seasonal, and decadal dynamics of VWC reflect variations in different processes relating the tree response to water stress. VWC can also be used for inferring belowground conditions-which are difficult to impossible to observe directly. Lastly, we discuss how a dedicated geostationary spaceborne observational system for VWC, when combined with existing datasets, can capture diel and seasonal water dynamics to advance the science and applications of global forest vulnerability to future droughts.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Ecosistema / Sequías Idioma: En Revista: Glob Chang Biol Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Ecosistema / Sequías Idioma: En Revista: Glob Chang Biol Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos