Your browser doesn't support javascript.
loading
Revisiting the T2 spectrum imaging inverse problem: Bayesian regularized non-negative least squares.
Canales-Rodríguez, Erick Jorge; Pizzolato, Marco; Yu, Thomas; Piredda, Gian Franco; Hilbert, Tom; Radua, Joaquim; Kober, Tobias; Thiran, Jean-Philippe.
Afiliación
  • Canales-Rodríguez EJ; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), EPFL-STI-IEL-LTS5, Station 11, CH-1015, Lausanne, Switzerland. Electronic address: erick.canalesrodriguez@epfl.ch.
  • Pizzolato M; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), EPFL-STI-IEL-LTS5, Station 11, CH-1015, Lausanne, Switzerland.
  • Yu T; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), EPFL-STI-IEL-LTS5, Station 11, CH-1015, Lausanne, Switzerland; Medical Image Analysis Laboratory, Center for Biomedical Imaging (CIBM), University of Lausanne, Switzerland.
  • Piredda GF; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), EPFL-STI-IEL-LTS5, Station 11, CH-1015, Lausanne, Switzerland; Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland; Department of Radiology, Lausanne University Hospital and Universit
  • Hilbert T; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), EPFL-STI-IEL-LTS5, Station 11, CH-1015, Lausanne, Switzerland; Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland; Department of Radiology, Lausanne University Hospital and Universit
  • Radua J; Imaging of Mood- and Anxiety-Related Disorders (IMARD) group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Barcelona, Spain; Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Departm
  • Kober T; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), EPFL-STI-IEL-LTS5, Station 11, CH-1015, Lausanne, Switzerland; Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland; Department of Radiology, Lausanne University Hospital and Universit
  • Thiran JP; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), EPFL-STI-IEL-LTS5, Station 11, CH-1015, Lausanne, Switzerland; Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
Neuroimage ; 244: 118582, 2021 12 01.
Article en En | MEDLINE | ID: mdl-34536538
Multi-echo T2 magnetic resonance images contain information about the distribution of T2 relaxation times of compartmentalized water, from which we can estimate relevant brain tissue properties such as the myelin water fraction (MWF). Regularized non-negative least squares (NNLS) is the tool of choice for estimating non-parametric T2 spectra. However, the estimation is ill-conditioned, sensitive to noise, and highly affected by the employed regularization weight. The purpose of this study is threefold: first, we want to underline that the apparently innocuous use of two alternative parameterizations for solving the inverse problem, which we called the standard and alternative regularization forms, leads to different solutions; second, to assess the performance of both parameterizations; and third, to propose a new Bayesian regularized NNLS method (BayesReg). The performance of BayesReg was compared with that of two conventional approaches (L-curve and Chi-square (X2) fitting) using both regularization forms. We generated a large dataset of synthetic data, acquired in vivo human brain data in healthy participants for conducting a scan-rescan analysis, and correlated the myelin content derived from histology with the MWF estimated from ex vivo data. Results from synthetic data indicate that BayesReg provides accurate MWF estimates, comparable to those from L-curve and X2, and with better overall stability across a wider signal-to-noise range. Notably, we obtained superior results by using the alternative regularization form. The correlations reported in this study are higher than those reported in previous studies employing the same ex vivo and histological data. In human brain data, the estimated maps from L-curve and BayesReg were more reproducible. However, the T2 spectra produced by BayesReg were less affected by over-smoothing than those from L-curve. These findings suggest that BayesReg is a good alternative for estimating T2 distributions and MWF maps.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Encéfalo / Imagen por Resonancia Magnética Tipo de estudio: Prognostic_studies Límite: Adult / Female / Humans / Male Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2021 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Encéfalo / Imagen por Resonancia Magnética Tipo de estudio: Prognostic_studies Límite: Adult / Female / Humans / Male Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2021 Tipo del documento: Article