Your browser doesn't support javascript.
loading
Image-based deep learning reveals the responses of human motor neurons to stress and VCP-related ALS.
Verzat, Colombine; Harley, Jasmine; Patani, Rickie; Luisier, Raphaëlle.
Afiliación
  • Verzat C; Genomics and Health Informatics Group, Idiap Research Institute, Martigny, Switzerland.
  • Harley J; Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute, London, UK.
  • Patani R; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK.
  • Luisier R; Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute, London, UK.
Neuropathol Appl Neurobiol ; 48(2): e12770, 2022 02.
Article en En | MEDLINE | ID: mdl-34595747
AIMS: Although morphological attributes of cells and their substructures are recognised readouts of physiological or pathophysiological states, these have been relatively understudied in amyotrophic lateral sclerosis (ALS) research. METHODS: In this study, we integrate multichannel fluorescence high-content microscopy data with deep learning imaging methods to reveal-directly from unsegmented images-novel neurite-associated morphological perturbations associated with (ALS-causing) VCP-mutant human motor neurons (MNs). RESULTS: Surprisingly, we reveal that previously unrecognised disease-relevant information is withheld in broadly used and often considered 'generic' biological markers of nuclei (DAPI) and neurons ( ß III-tubulin). Additionally, we identify changes within the information content of ALS-related RNA binding protein (RBP) immunofluorescence imaging that is captured in VCP-mutant MN cultures. Furthermore, by analysing MN cultures exposed to different extrinsic stressors, we show that heat stress recapitulates key aspects of ALS. CONCLUSIONS: Our study therefore reveals disease-relevant information contained in a range of both generic and more specific fluorescent markers and establishes the use of image-based deep learning methods for rapid, automated and unbiased identification of biological hypotheses.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Neuritas / Aprendizaje Profundo / Esclerosis Amiotrófica Lateral / Neuronas Motoras Límite: Humans Idioma: En Revista: Neuropathol Appl Neurobiol Año: 2022 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Neuritas / Aprendizaje Profundo / Esclerosis Amiotrófica Lateral / Neuronas Motoras Límite: Humans Idioma: En Revista: Neuropathol Appl Neurobiol Año: 2022 Tipo del documento: Article País de afiliación: Suiza