Your browser doesn't support javascript.
loading
Zr(OH)4 -Catalyzed Controllable Selective Oxidation of Anilines to Azoxybenzenes, Azobenzenes and Nitrosobenzenes.
Qin, Jiaheng; Long, Yu; Sun, Fangkun; Zhou, Pan-Pan; Wang, Wei David; Luo, Nan; Ma, Jiantai.
Afiliación
  • Qin J; State Key Laboratory of Applied Organic Chemistry (SKLAOC), the Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.
  • Long Y; State Key Laboratory of Applied Organic Chemistry (SKLAOC), the Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.
  • Sun F; State Key Laboratory of Applied Organic Chemistry (SKLAOC), the Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.
  • Zhou PP; State Key Laboratory of Applied Organic Chemistry (SKLAOC), the Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.
  • Wang WD; State Key Laboratory of Applied Organic Chemistry (SKLAOC), the Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.
  • Luo N; State Key Laboratory of Applied Organic Chemistry (SKLAOC), the Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.
  • Ma J; State Key Laboratory of Applied Organic Chemistry (SKLAOC), the Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.
Angew Chem Int Ed Engl ; 61(2): e202112907, 2022 Jan 10.
Article en En | MEDLINE | ID: mdl-34643982
The selective oxidation of aniline to metastable and valuable azoxybenzene, azobenzene or nitrosobenzene has important practical significance in organic synthesis. However, uncontrollable selectivity and laborious synthesis of the expensive required catalysts severely hinders the uptake of these reactions in industrial settings. Herein, we have pioneered the discovery of Zr(OH)4 as an efficient heterogeneous catalyst capable of the selective oxidation of aniline, using either peroxide or O2 as oxidant, to selectively obtain various azoxybenzenes, symmetric/unsymmetric azobenzenes, as well as nitrosobenzenes, by simply regulating the reaction solvent, without the need for additives. Mechanistic experiments and DFT calculations demonstrate that the activation of H2 O2 and O2 is primarily achieved by the bridging hydroxyl and terminal hydroxyl groups of Zr(OH)4 , respectively. The present work provides an economical and environmentally friendly strategy for the selective oxidation of aniline in industrial applications.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2022 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2022 Tipo del documento: Article