Your browser doesn't support javascript.
loading
Laser nano-filament explosion for enabling open-grating sensing in optical fibre.
Mahmoud Aghdami, Keivan; Rahnama, Abdullah; Ertorer, Erden; Herman, Peter R.
Afiliación
  • Mahmoud Aghdami K; Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Rd., Toronto, ON, M5S 3G4, Canada. k_aghdami@pnu.ac.ir.
  • Rahnama A; Department of Physics, Payame Noor University (PNU), P.O. Box: 19395-4697, Tehran, Iran. k_aghdami@pnu.ac.ir.
  • Ertorer E; Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Rd., Toronto, ON, M5S 3G4, Canada. abdullah.rahnama@mail.utoronto.ca.
  • Herman PR; Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Rd., Toronto, ON, M5S 3G4, Canada.
Nat Commun ; 12(1): 6344, 2021 Nov 03.
Article en En | MEDLINE | ID: mdl-34732710
ABSTRACT
Embedding strong photonic stopbands into traditional optical fibre that can directly access and sense the outside environment is challenging, relying on tedious nano-processing steps that result in fragile thinned fibre. Ultrashort-pulsed laser filaments have recently provided a non-contact means of opening high-aspect ratio nano-holes inside of bulk transparent glasses. This method has been extended here to optical fibre, resulting in high density arrays of laser filamented holes penetrating transversely through the silica cladding and guiding core to provide high refractive index contrast Bragg gratings in the telecommunication band. The point-by-point fabrication was combined with post-chemical etching to engineer strong photonic stopbands directly inside of the compact and flexible fibre. Fibre Bragg gratings with sharply resolved π-shifts are presented for high resolution refractive index sensing from [Formula see text] = 1 to 1.67 as the nano-holes were readily wetted and filled with various solvents and oils through an intact fibre cladding.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: Canadá