Your browser doesn't support javascript.
loading
Machine Learning Refutes Loss of Smell as a Risk Indicator of Diabetes Mellitus.
Lötsch, Jörn; Hähner, Antje; Schwarz, Peter E H; Tselmin, Sergey; Hummel, Thomas.
Afiliación
  • Lötsch J; Institute of Clinical Pharmacology, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.
  • Hähner A; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
  • Schwarz PEH; Smell & Taste Clinic, Department of Otorhinolaryngology, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
  • Tselmin S; Department of Internal Medicine III, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
  • Hummel T; Department of Internal Medicine III, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
J Clin Med ; 10(21)2021 Oct 26.
Article en En | MEDLINE | ID: mdl-34768493
Because it is associated with central nervous changes, and olfactory dysfunction has been reported with increased prevalence among persons with diabetes, this study addressed the question of whether the risk of developing diabetes in the next 10 years is reflected in olfactory symptoms. In a cross-sectional study, in 164 individuals seeking medical consulting for possible diabetes, olfactory function was evaluated using a standardized clinical test assessing olfactory threshold, odor discrimination, and odor identification. Metabolomics parameters were assessed via blood concentrations. The individual diabetes risk was quantified according to the validated German version of the "FINDRISK" diabetes risk score. Machine learning algorithms trained with metabolomics patterns predicted low or high diabetes risk with a balanced accuracy of 63-75%. Similarly, olfactory subtest results predicted the olfactory dysfunction category with a balanced accuracy of 85-94%, occasionally reaching 100%. However, olfactory subtest results failed to improve the prediction of diabetes risk based on metabolomics data, and metabolomics data did not improve the prediction of the olfactory dysfunction category based on olfactory subtest results. Results of the present study suggest that olfactory function is not a useful predictor of diabetes.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Clin Med Año: 2021 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Clin Med Año: 2021 Tipo del documento: Article País de afiliación: Alemania