Your browser doesn't support javascript.
loading
Synthesis of 2D semiconducting single crystalline Bi2S3 for high performance electronics.
Kim, Youngchan; Jeong, Euihoon; Joe, Minwoong; Lee, Changgu.
Afiliación
  • Kim Y; School of Mechanical and Automotive Engineering, Kyungsung University, 309, Suyeong-ro, Nam-gu, Busan, Republic of Korea. ykim2020@ks.ac.kr.
  • Jeong E; SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 2066, Republic of Korea. dmlgns664@gmail.com.
  • Joe M; School of Mechanical Engineering, Sungkyunkwan University, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 2066, Republic of Korea.
  • Lee C; SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 2066, Republic of Korea. dmlgns664@gmail.com.
Phys Chem Chem Phys ; 23(47): 26806-26812, 2021 Dec 08.
Article en En | MEDLINE | ID: mdl-34817482
ABSTRACT
2-Dimensional (2D) semiconducting materials are attractive candidates for future electronic device applications due to the tunable bandgap, transparency, flexibility, and downscaling to the atomic level in material size and thickness. However, 2D materials have critical issues regarding van der Waals contact, interface instability and power consumption. In particular, the development of semiconducting electronics based on 2D materials is significantly hindered by a low charge-carrier mobility. In order to improve the critical shortcoming, diverse efforts have been made in synthesis and device engineering. Here, we propose a synthesis method of single crystalline 2D Bi2S3 by chemical vapor deposition for high performance electronic device applications. The ion-gel gated field effect transistor with the as-grown Bi2S3 on the SiO2 substrate exhibits a high mobility of 100.4 cm2 V-1 S-1 and an on-off current ratio of 104 under a low gate voltage below 4 V at room temperature without chemical doping and surface engineering. The superior performance is attributed to the high crystal quality of Bi2S3 that shows low sulfur vacancies and atomic ratio close to the ideal value (2 3) under a rich sulfur growth process using H2S gas instead of sulfur powder. The synthesis method will provide a platform to realize high performance electronics and optoelectronics based on 2D semiconductors.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2021 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2021 Tipo del documento: Article