Your browser doesn't support javascript.
loading
Nests of dividing neuroblasts sustain interneuron production for the developing human brain.
Paredes, Mercedes F; Mora, Cristina; Flores-Ramirez, Quetzal; Cebrian-Silla, Arantxa; Del Dosso, Ashley; Larimer, Phil; Chen, Jiapei; Kang, Gugene; Gonzalez Granero, Susana; Garcia, Eric; Chu, Julia; Delgado, Ryan; Cotter, Jennifer A; Tang, Vivian; Spatazza, Julien; Obernier, Kirsten; Ferrer Lozano, Jaime; Vento, Maximo; Scott, Julia; Studholme, Colin; Nowakowski, Tomasz J; Kriegstein, Arnold R; Oldham, Michael C; Hasenstaub, Andrea; Garcia-Verdugo, Jose Manuel; Alvarez-Buylla, Arturo; Huang, Eric J.
Afiliación
  • Paredes MF; Department of Neurology, University of California, San Francisco, CA 94143, USA.
  • Mora C; Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.
  • Flores-Ramirez Q; Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA.
  • Cebrian-Silla A; Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA.
  • Del Dosso A; Department of Pathology, University of California, San Francisco, CA 94143, USA.
  • Larimer P; Department of Neurology, University of California, San Francisco, CA 94143, USA.
  • Chen J; Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.
  • Kang G; Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA.
  • Gonzalez Granero S; Department of Pathology, University of California, San Francisco, CA 94143, USA.
  • Garcia E; Department of Neurology, University of California, San Francisco, CA 94143, USA.
  • Chu J; Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA.
  • Delgado R; Department of Pathology, University of California, San Francisco, CA 94143, USA.
  • Cotter JA; Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA.
  • Tang V; Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA.
  • Spatazza J; Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València-Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain.
  • Obernier K; Department of Neurology, University of California, San Francisco, CA 94143, USA.
  • Ferrer Lozano J; Department of Neurology, University of California, San Francisco, CA 94143, USA.
  • Vento M; Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.
  • Scott J; Department of Pathology, Children's Hospital Los Angeles, and Keck School of Medicine of University of Southern California, Los Angeles, CA 90027, USA.
  • Studholme C; Department of Pathology, University of California, San Francisco, CA 94143, USA.
  • Nowakowski TJ; Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA.
  • Kriegstein AR; Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA.
  • Oldham MC; Department of Pathology, Hospital Universitari i Politecnic La Fe, Valencia, Spain.
  • Hasenstaub A; Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain.
  • Garcia-Verdugo JM; Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain.
  • Alvarez-Buylla A; Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053, USA.
  • Huang EJ; Biomedical Image Computing Group, Departments of Pediatrics, Bioengineering, and Radiology, University of Washington, Seattle, WA 98195, USA.
Science ; 375(6579): eabk2346, 2022 01 28.
Article en En | MEDLINE | ID: mdl-35084970
The human cortex contains inhibitory interneurons derived from the medial ganglionic eminence (MGE), a germinal zone in the embryonic ventral forebrain. How this germinal zone generates sufficient interneurons for the human brain remains unclear. We found that the human MGE (hMGE) contains nests of proliferative neuroblasts with ultrastructural and transcriptomic features that distinguish them from other progenitors in the hMGE. When dissociated hMGE cells are transplanted into the neonatal mouse brain, they reform into nests containing proliferating neuroblasts that generate young neurons that migrate extensively into the mouse forebrain and mature into different subtypes of functional interneurons. Together, these results indicate that the nest organization and sustained proliferation of neuroblasts in the hMGE provide a mechanism for the extended production of interneurons for the human forebrain.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Prosencéfalo / Neurogénesis / Células-Madre Neurales / Interneuronas / Eminencia Media Límite: Animals / Humans Idioma: En Revista: Science Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Prosencéfalo / Neurogénesis / Células-Madre Neurales / Interneuronas / Eminencia Media Límite: Animals / Humans Idioma: En Revista: Science Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos