Your browser doesn't support javascript.
loading
In vivo measurements of lamination patterns in the human cortex.
Tomer, Omri; Barazany, Daniel; Baratz, Zvi; Tsarfaty, Galia; Assaf, Yaniv.
Afiliación
  • Tomer O; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
  • Barazany D; The Strauss Center for Computational Neuroimaging, Tel Aviv University, Tel Aviv, Israel.
  • Baratz Z; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
  • Tsarfaty G; Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
  • Assaf Y; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
Hum Brain Mapp ; 43(9): 2861-2868, 2022 06 15.
Article en En | MEDLINE | ID: mdl-35274794
ABSTRACT
The laminar composition of the cerebral cortex is tightly connected to the development and connectivity of the brain, as well as to function and pathology. Although most of the research on the cortical layers is done with the aid of ex vivo histology, there have been recent attempts to use magnetic resonance imaging (MRI) with potential in vivo applications. However, the high-resolution MRI technology and protocols required for such studies are neither common nor practical. In this article, we present a clinically feasible method for assessing the laminar properties of the human cortex using standard pulse sequence available on any common MRI scanner. Using a series of low-resolution inversion recovery (IR) MRI scans allows us to calculate multiple T1 relaxation time constants for each voxel. Based on the whole-brain T1 -distribution, we identify six different gray matter T1 populations and their variation across the cortex. Based on this, we show age-related differences in these population and demonstrate that this method is able to capture the difference in laminar composition across varying brain areas. We also provide comparison to ex vivo high-resolution MRI scans. We show that this method is feasible for the estimation of layer variability across large population cohorts, which can lead to research into the links between the cortical layers and function, behavior and pathologies that was heretofore unexplorable.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Corteza Cerebral / Sustancia Gris Tipo de estudio: Guideline / Prognostic_studies Límite: Humans Idioma: En Revista: Hum Brain Mapp Asunto de la revista: CEREBRO Año: 2022 Tipo del documento: Article País de afiliación: Israel

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Corteza Cerebral / Sustancia Gris Tipo de estudio: Guideline / Prognostic_studies Límite: Humans Idioma: En Revista: Hum Brain Mapp Asunto de la revista: CEREBRO Año: 2022 Tipo del documento: Article País de afiliación: Israel