Your browser doesn't support javascript.
loading
A three-year dataset supporting research on building energy management and occupancy analytics.
Luo, Na; Wang, Zhe; Blum, David; Weyandt, Christopher; Bourassa, Norman; Piette, Mary Ann; Hong, Tianzhen.
Afiliación
  • Luo N; Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States.
  • Wang Z; Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States.
  • Blum D; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
  • Weyandt C; Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States.
  • Bourassa N; Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States.
  • Piette MA; Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States.
  • Hong T; Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States.
Sci Data ; 9(1): 156, 2022 04 05.
Article en En | MEDLINE | ID: mdl-35383184
This paper presents the curation of a monitored dataset from an office building constructed in 2015 in Berkeley, California. The dataset includes whole-building and end-use energy consumption, HVAC system operating conditions, indoor and outdoor environmental parameters, as well as occupant counts. The data were collected during a period of three years from more than 300 sensors and meters on two office floors (each 2,325 m2) of the building. A three-step data curation strategy is applied to transform the raw data into research-grade data: (1) cleaning the raw data to detect and adjust the outlier values and fill the data gaps; (2) creating the metadata model of the building systems and data points using the Brick schema; and (3) representing the metadata of the dataset using a semantic JSON schema. This dataset can be used in various applications-building energy benchmarking, load shape analysis, energy prediction, occupancy prediction and analytics, and HVAC controls-to improve the understanding and efficiency of building operations for reducing energy use, energy costs, and carbon emissions.

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Sci Data Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Sci Data Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos