Your browser doesn't support javascript.
loading
Homogeneity assessment of the SuperCam calibration targets onboard rover perseverance.
Madariaga, J M; Aramendia, J; Arana, G; Castro, K; Gómez-Nubla, L; Fdez-Ortiz de Vallejuelo, S; Garcia-Florentino, C; Maguregui, M; Manrique, J A; Lopez-Reyes, G; Moros, J; Cousin, A; Maurice, S; Ollila, A M; Wiens, R C; Rull, F; Laserna, J; Garcia-Baonza, V; Madsen, M B; Forni, O; Lasue, J; Clegg, S M; Robinson, S; Bernardi, P; Brown, A J; Caïs, P; Martinez-Frias, J; Beck, P; Bernard, S; Bernt, M H; Beyssac, O; Cloutis, E; Drouet, C; Dromart, G; Dubois, B; Fabre, C; Gasnault, O; Gontijo, I; Johnson, J R; Medina, J; Meslin, P-Y; Montagnac, G; Sautter, V; Sharma, S K; Veneranda, M; Willis, P A.
Afiliación
  • Madariaga JM; Dept. of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain. Electronic address: juanmanuel.madariaga@ehu.es.
  • Aramendia J; Dept. of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain.
  • Arana G; Dept. of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain.
  • Castro K; Dept. of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain.
  • Gómez-Nubla L; Dept. of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain.
  • Fdez-Ortiz de Vallejuelo S; Dept. of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain.
  • Garcia-Florentino C; Dept. of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain.
  • Maguregui M; Dept. of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain.
  • Manrique JA; Unidad Asociada UVA-CSIC-CAB, University of Valladolid (UVA), Valladolid, Spain.
  • Lopez-Reyes G; Unidad Asociada UVA-CSIC-CAB, University of Valladolid (UVA), Valladolid, Spain.
  • Moros J; Dept. of Analytical Chemistry, University of Malaga (UMA), Malaga, Spain.
  • Cousin A; Institut de Recherche en Astrophysique et Planetologie (IRAP), CNRS, UMR, 5277, Toulouse, France.
  • Maurice S; Institut de Recherche en Astrophysique et Planetologie (IRAP), CNRS, UMR, 5277, Toulouse, France.
  • Ollila AM; Los Alamos National Laboratory (LANL), Los Alamos, NM, USA.
  • Wiens RC; Los Alamos National Laboratory (LANL), Los Alamos, NM, USA; Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, USA.
  • Rull F; Unidad Asociada UVA-CSIC-CAB, University of Valladolid (UVA), Valladolid, Spain.
  • Laserna J; Dept. of Analytical Chemistry, University of Malaga (UMA), Malaga, Spain.
  • Garcia-Baonza V; University Complutense of Madrid (UCM), Madrid, Spain; Institute of Geosciences IGEO (CSIC-UCM), Madrid, Spain.
  • Madsen MB; Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
  • Forni O; Institut de Recherche en Astrophysique et Planetologie (IRAP), CNRS, UMR, 5277, Toulouse, France.
  • Lasue J; Institut de Recherche en Astrophysique et Planetologie (IRAP), CNRS, UMR, 5277, Toulouse, France.
  • Clegg SM; Los Alamos National Laboratory (LANL), Los Alamos, NM, USA.
  • Robinson S; Los Alamos National Laboratory (LANL), Los Alamos, NM, USA.
  • Bernardi P; Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Meudon, France.
  • Brown AJ; NASA HQ, Severna Park, MD, USA.
  • Caïs P; Laboratoire d'astrophysique de Bordeaux, Univ. Bordeaux, CNRS, France.
  • Martinez-Frias J; Institute of Geosciences IGEO (CSIC-UCM), Madrid, Spain.
  • Beck P; Institute de Planetologie et d'Astrophysique de Grenobel, Université Grenoble Alpes, Grenoble, France.
  • Bernard S; IMPMC, Museum National d'Histoire Naturelle, CNRS, Sorbonne Université, Paris, France.
  • Bernt MH; Institut de Recherche en Astrophysique et Planetologie (IRAP), CNRS, UMR, 5277, Toulouse, France.
  • Beyssac O; IMPMC, Museum National d'Histoire Naturelle, CNRS, Sorbonne Université, Paris, France.
  • Cloutis E; Dept. of Geography, University of Winnipeg, 515 Portage Avenue, Winnipeg, MN, R3B 2E9, Canada.
  • Drouet C; Centre Interuniversitaire de Recherche et d'Ingénierie des Matériaux (CIRIMAT), CNRS, Toulouse, France.
  • Dromart G; Laboratoire de Géologie de Lyon, Lyon, France.
  • Dubois B; Institut de Recherche en Astrophysique et Planetologie (IRAP), CNRS, UMR, 5277, Toulouse, France.
  • Fabre C; GeoRessources Vandoeuvre les Nancy, Nancy, France.
  • Gasnault O; Institut de Recherche en Astrophysique et Planetologie (IRAP), CNRS, UMR, 5277, Toulouse, France.
  • Gontijo I; Jet Propulsion Laboratory, Pasadena, USA.
  • Johnson JR; Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, 20723-6005, USA.
  • Medina J; Unidad Asociada UVA-CSIC-CAB, University of Valladolid (UVA), Valladolid, Spain.
  • Meslin PY; Institut de Recherche en Astrophysique et Planetologie (IRAP), CNRS, UMR, 5277, Toulouse, France.
  • Montagnac G; Laboratoire de Géologie de Lyon, Lyon, France.
  • Sautter V; IMPMC, Museum National d'Histoire Naturelle, CNRS, Sorbonne Université, Paris, France.
  • Sharma SK; University of Hawaii, Manoa, HI, USA.
  • Veneranda M; Unidad Asociada UVA-CSIC-CAB, University of Valladolid (UVA), Valladolid, Spain.
  • Willis PA; Jet Propulsion Laboratory, Pasadena, USA.
Anal Chim Acta ; 1209: 339837, 2022 May 29.
Article en En | MEDLINE | ID: mdl-35569848
The SuperCam instrument, onboard the Perseverance rover (Mars 2020 mission) is designed to perform remote analysis on the Martian surface employing several spectroscopic techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman (TRR), Time-Resolved Fluorescence (TRF) and Visible and Infrared (VISIR) reflectance. In addition, SuperCam also acquires high-resolution images using a color remote micro-imager (RMI) as well as sounds with its microphone. SuperCam has three main subsystems, the Mast Unit (MU) where the laser for chemical analysis and collection optics are housed, the Body Unit (BU) where the different spectrometers are located inside the rover, and the SuperCam Calibration Target (SCCT) located on the rover's deck to facilitate calibration tests at similar ambient conditions as the analyzed samples. To perform adequate calibrations on Mars, the 22 mineral samples included in the complex SCCT assembly must have a very homogeneous distribution of major and minor elements. The analysis and verification of such homogeneity for the 5-6 replicates of the samples included in the SCCT has been the aim of this work. To verify the physic-chemical homogeneity of the calibration targets, micro Energy Dispersive X-ray Fluorescence (EDXRF) imaging was first used on the whole surface of the targets, then the relative abundances of the detected elements were computed on 20 randomly distributed areas of 100 × 100 µm. For those targets showing a positive Raman response, micro-Raman spectroscopy imaging was performed on the whole surface of the targets at a resolution of 100 × 100 µm. The %RSD values (percent of relative standard deviation of mean values) for the major elements measured with EDXRF were compared with similar values obtained by two independent LIBS set-ups at spot sizes of 300 µm in diameter. The statistical analysis showed which elements were homogeneously distributed in the 22 mineral targets of the SCCT, providing their uncertainty values for further calibration. Moreover, nine of the 22 targets showed a good Raman response and their mineral distributions were also studied. Those targets can be also used for calibration purposes of the Raman part of SuperCam using the wavenumbers of their main Raman bands proposed in this work.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Marte / Medio Ambiente Extraterrestre Tipo de estudio: Prognostic_studies Idioma: En Revista: Anal Chim Acta Año: 2022 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Marte / Medio Ambiente Extraterrestre Tipo de estudio: Prognostic_studies Idioma: En Revista: Anal Chim Acta Año: 2022 Tipo del documento: Article