Your browser doesn't support javascript.
loading
AI Model for Prostate Biopsies Predicts Cancer Survival.
Sandeman, Kevin; Blom, Sami; Koponen, Ville; Manninen, Anniina; Juhila, Juuso; Rannikko, Antti; Ropponen, Tuomas; Mirtti, Tuomas.
Afiliación
  • Sandeman K; Medicum and Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland.
  • Blom S; Department of Pathology, Division of Laboratory Medicine, Skåne University Hospital, Jan Waldenström Gata 59, 20502 Malmö, Sweden.
  • Koponen V; Aiforia Technologies Plc., Tukholmankatu 8, 00290 Helsinki, Finland.
  • Manninen A; Aiforia Technologies Plc., Tukholmankatu 8, 00290 Helsinki, Finland.
  • Juhila J; Aiforia Technologies Plc., Tukholmankatu 8, 00290 Helsinki, Finland.
  • Rannikko A; Aiforia Technologies Plc., Tukholmankatu 8, 00290 Helsinki, Finland.
  • Ropponen T; Medicum and Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland.
  • Mirtti T; Department of Urology, Helsinki University Hospital, P.O. Box 340, 00029 Helsinki, Finland.
Diagnostics (Basel) ; 12(5)2022 Apr 20.
Article en En | MEDLINE | ID: mdl-35626187
An artificial intelligence (AI) algorithm for prostate cancer detection and grading was developed for clinical diagnostics on biopsies. The study cohort included 4221 scanned slides from 872 biopsy sessions at the HUS Helsinki University Hospital during 2016-2017 and a subcohort of 126 patients treated by robot-assisted radical prostatectomy (RALP) during 2016-2019. In the validation cohort (n = 391), the model detected cancer with a sensitivity of 98% and specificity of 98% (weighted kappa 0.96 compared with the pathologist's diagnosis). Algorithm-based detection of the grade area recapitulated the pathologist's grade group. The area of AI-detected cancer was associated with extra-prostatic extension (G5 OR: 48.52; 95% CI 1.11-8.33), seminal vesicle invasion (cribriform G4 OR: 2.46; 95% CI 0.15-1.7; G5 OR: 5.58; 95% CI 0.45-3.42), and lymph node involvement (cribriform G4 OR: 2.66; 95% CI 0.2-1.8; G5 OR: 4.09; 95% CI 0.22-3). Algorithm-detected grade group 3-5 prostate cancer depicted increased risk for biochemical recurrence compared with grade groups 1-2 (HR: 5.91; 95% CI 1.96-17.83). This study showed that a deep learning model not only can find and grade prostate cancer on biopsies comparably with pathologists but also can predict adverse staging and probability for recurrence after surgical treatment.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Diagnostics (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Finlandia

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Diagnostics (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Finlandia