Your browser doesn't support javascript.
loading
Protecting group principles suited to late stage functionalization and global deprotection in oligosaccharide synthesis.
Dhara, Debashis; Dhara, Ashis; Murphy, Paul V; Mulard, Laurence A.
Afiliación
  • Dhara D; Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Unité de Chimie des Biomolécules, 25-28 rue du Dr Roux, 75015, Paris, France; School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland. Electronic address: debaorg@gmail.com.
  • Dhara A; School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland.
  • Murphy PV; School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland; SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, NUI Galway, University Road, Galway, H91 TK33, Ireland.
  • Mulard LA; Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Unité de Chimie des Biomolécules, 25-28 rue du Dr Roux, 75015, Paris, France.
Carbohydr Res ; 521: 108644, 2022 Nov.
Article en En | MEDLINE | ID: mdl-36030632
Chemical synthesis is a powerful tool to access homogeneous complex glycans, which relies on protecting group (PG) chemistry. However, the overall efficiency of chemical glycan assembly is still low when compared to oligonucleotide or oligopeptide synthesis. There have been many contributions giving rise to collective improvement in carbohydrate synthesis that includes PG manipulation and stereoselective glycoside formation and some of this chemistry has been transferred to the solid phase or adapted for programmable one pot synthesis approaches. However, after all glycoside bond formation reactions are completed, the global deprotection (GD) required to give the desired target OS can be challenging. Difficulties observed in the removal of permanent PGs to release the desired glycans can be due to the number and diversity of PGs present in the protected OSs, nature and structural complexity of glycans, etc. Here, we have reviewed the difficulties associated with the removal of PGs from densely protected OSs to obtain their free glycans. In particularly, this review focuses on the challenges associated with hydrogenolysis of benzyl groups, saponification of esters and functional group interconversion such as oxidation/reduction that are commonly performed in GD stage. More generally, problems observed in the removal of permanent PGs is reviewed herein, including benzyl, acyl (levulinoyl, acetyl), N-trichloroacetyl, N-2,2,2-trichloroethoxycarbonyl, N-phthaloyl etc. from a number of fully protected OSs to release the free sugar, that have been previously reported in the literature.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Polisacáridos / Carbohidratos Idioma: En Revista: Carbohydr Res Año: 2022 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Polisacáridos / Carbohidratos Idioma: En Revista: Carbohydr Res Año: 2022 Tipo del documento: Article