Your browser doesn't support javascript.
loading
Photophysical, optical and lasing analysis of fluorinatedß-keto carboxylate europium(III) complexes.
Khatri, Savita; Ahlawat, Pratibha; Khatkar, S P; Taxak, V B; Kumar, Rajesh.
Afiliación
  • Khatri S; Department of Chemistry,UIET, Maharshi Dayanand University, Rohtak-124001, India.
  • Ahlawat P; Department of Chemistry,UIET, Maharshi Dayanand University, Rohtak-124001, India.
  • Khatkar SP; Department of Chemistry, Maharshi Dayanand University, Rohtak-124001, India.
  • Taxak VB; Department of Chemistry, Maharshi Dayanand University, Rohtak-124001, India.
  • Kumar R; Department of Chemistry,UIET, Maharshi Dayanand University, Rohtak-124001, India.
Methods Appl Fluoresc ; 10(4)2022 Nov 03.
Article en En | MEDLINE | ID: mdl-36215954
ABSTRACT
Six luminescent, bright red Eu(III) complexes with aß-keto-carboxylic acid as prime ligand and N-donor aromatic systems as auxillary ligand were synthesised via ecologically efficient grinding method. The distinctive red peak (5D0 â†’ 7F2) of Eu(III) ion is exhibited in emission spectra of all complexes. The luminescent properties of complexes were analysed through decay time, color coordinates, luminescence efficiency and Judd Ofelt parameters. The value of Ω2is found to be higher than Ω4which indicated hypersensitive nature of5D0 â†’ 7F2transition. The results established the complexes as a strong contender for red light emitting display devices. The fluorescence branching ratios, stimulated emission cross section, gain band width and optical gain showed the good lasing strength of5D0 â†’ 7F2transition of complexes. The complexes exhibited decent thermal stability and have optical energy band gap value in semiconductor range, thus can have relevance in optoelectronic devices. Energy transfer mechanism was investigated for complexes which affirmed the efficacious transfer of energy from ligands to Eu(III) ion. The synthesised complexes were also assayed for antimicrobial and antioxidant properties. All complexes are reported to show better antioxidant behaviour than the prime ligand and also exhibited upstanding antibacterial activities.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Europio / Antioxidantes Idioma: En Revista: Methods Appl Fluoresc Año: 2022 Tipo del documento: Article País de afiliación: India

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Europio / Antioxidantes Idioma: En Revista: Methods Appl Fluoresc Año: 2022 Tipo del documento: Article País de afiliación: India