Your browser doesn't support javascript.
loading
Actionable Predictive Factors of Homelessness in a Psychiatric Population: Results from the REHABase Cohort Using a Machine Learning Approach.
Lio, Guillaume; Ghazzai, Malek; Haesebaert, Frédéric; Dubreucq, Julien; Verdoux, Hélène; Quiles, Clélia; Jaafari, Nemat; Chéreau-Boudet, Isabelle; Legros-Lafarge, Emilie; Guillard-Bouhet, Nathalie; Massoubre, Catherine; Gouache, Benjamin; Plasse, Julien; Barbalat, Guillaume; Franck, Nicolas; Demily, Caroline.
Afiliación
  • Lio G; Centre d'Excellence Autisme iMIND, pôle HU-ADIS, Hôpital le Vinatier, 69678 Bron, France.
  • Ghazzai M; Equipe «Disorders of the Brain¼, Institut Marc Jeannerod, UMR 5229, CNRS & Université Lyon 1, 69100 Villeurbanne, France.
  • Haesebaert F; Centre d'Excellence Autisme iMIND, pôle HU-ADIS, Hôpital le Vinatier, 69678 Bron, France.
  • Dubreucq J; Pôle Centre Rive Gauche, Hôpital Le Vinatier, 69678 Bron, France.
  • Verdoux H; Centre Hospitalier Universitaire de Saint-Etienne, 42270 Saint-Priest-en-Jarez, France.
  • Quiles C; Hôpital Charles Perrens, Université de Bordeaux, 33405 Talence, France.
  • Jaafari N; Hôpital Charles Perrens, Université de Bordeaux, 33405 Talence, France.
  • Chéreau-Boudet I; CREATIV & URC Pierre Deniker, Centre Hospitalier Laborit, Université de Poitiers, 86000 Poitiers, France.
  • Legros-Lafarge E; Centre Référent Conjoint de Réhabilitation (CRCR), Centre Hospitalier Universitaire de Clermont-Ferrand, 63000 Clermont-Ferrand, France.
  • Guillard-Bouhet N; Centre Référent de Réhabilitation Psychosociale de Limoges (C2RL), 87000 Limoges, France.
  • Massoubre C; Centre Hospitalier Laborit, 86000 Poitiers, France.
  • Gouache B; Centre Hospitalier Universitaire de Saint-Etienne, 42270 Saint-Priest-en-Jarez, France.
  • Plasse J; Faculté de Médecine, Université de Saint-Etienne, 42023 Saint-Etienne, France.
  • Barbalat G; Centre Hospitalier Alpes-Isère, 38120 Saint Egrève, France.
  • Franck N; Pôle Centre Rive Gauche, Hôpital Le Vinatier, 69678 Bron, France.
  • Demily C; Centre Ressource de Réhabilitation Psychosociale et de Remédiation Cognitive (CRR), CH le Vinatier et Institut Marc Jeannerod, UMR 5229 & Université Lyon 1, 69100 Bron, France.
Article en En | MEDLINE | ID: mdl-36231571
BACKGROUND: There is a lack of knowledge regarding the actionable key predictive factors of homelessness in psychiatric populations. Therefore, we used a machine learning model to explore the REHABase database (for rehabilitation database-n = 3416), which is a cohort of users referred to French psychosocial rehabilitation centers in France. METHODS: First, we analyzed whether the different risk factors previously associated with homelessness in mental health were also significant risk factors in the REHABase. In the second step, we used unbiased classification and regression trees to determine the key predictors of homelessness. Post hoc analyses were performed to examine the importance of the predictors and to explore the impact of cognitive factors among the participants. RESULTS:  First, risk factors that were previously found to be associated with homelessness were also significant risk factors in the REHABase. Among all the variables studied with a machine learning approach, the most robust variable in terms of predictive value was the nature of the psychotropic medication (sex/sex relative mean predictor importance: 22.8, σ = 3.4). Post hoc analyses revealed that first-generation antipsychotics (15.61%; p < 0.05 FDR corrected), loxapine (16.57%; p < 0.05 FWER corrected) and hypnotics (17.56%; p < 0.05 FWER corrected) were significantly associated with homelessness. Antidepressant medication was associated with a protective effect against housing deprivation (9.21%; p < 0.05 FWER corrected). CONCLUSIONS: Psychotropic medication was found to be an important predictor of homelessness in our REHABase cohort, particularly loxapine and hypnotics. On the other hand, the putative protective effect of antidepressants confirms the need for systematic screening of depression and anxiety in the homeless population.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Antipsicóticos / Personas con Mala Vivienda / Loxapina Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Int J Environ Res Public Health Año: 2022 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Antipsicóticos / Personas con Mala Vivienda / Loxapina Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Int J Environ Res Public Health Año: 2022 Tipo del documento: Article País de afiliación: Francia