Your browser doesn't support javascript.
loading
Excellent Thermoelectric Performance of 2D CuMN2 (M = Sb, Bi; N = S, Se) at Room Temperature.
Fang, Wenyu; Chen, Yue; Kuang, Kuan; Li, Mingkai.
Afiliación
  • Fang W; Ministry-of-Education Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Lab of Ferro & Piezoelectric Materials and Devices, Hubei Key Laboratory of Polymer Materials, and School of Materials Science & Engineering, Hubei University, Wuhan 430062, China.
  • Chen Y; Public Health and Management School, Hubei University of Medicine, Shiyan 442000, China.
  • Kuang K; Ministry-of-Education Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Lab of Ferro & Piezoelectric Materials and Devices, Hubei Key Laboratory of Polymer Materials, and School of Materials Science & Engineering, Hubei University, Wuhan 430062, China.
  • Li M; Ministry-of-Education Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Lab of Ferro & Piezoelectric Materials and Devices, Hubei Key Laboratory of Polymer Materials, and School of Materials Science & Engineering, Hubei University, Wuhan 430062, China.
Materials (Basel) ; 15(19)2022 Sep 27.
Article en En | MEDLINE | ID: mdl-36234041
ABSTRACT
2D copper-based semiconductors generally possess low lattice thermal conductivity due to their strong anharmonic scattering and quantum confinement effect, making them promising candidate materials in the field of high-performance thermoelectric devices. In this work, we proposed four 2D copper-based materials, namely CuSbS2, CuSbSe2, CuBiS2, and CuBiSe2. Based on the framework of density functional theory and Boltzmann transport equation, we revealed that the monolayers possess high stability and narrow band gaps of 0.57~1.10 eV. Moreover, the high carrier mobilities (102~103 cm2·V-1·s-1) of these monolayers lead to high conductivities (106~107 Ω-1·m-1) and high-power factors (18.04~47.34 mW/mK2). Besides, as the strong phonon-phonon anharmonic scattering, the monolayers also show ultra-low lattice thermal conductivities of 0.23~3.30 W/mK at 300 K. As results show, all the monolayers for both p-type and n-type simultaneously show high thermoelectric figure of merit (ZT) of about 0.91~1.53 at room temperature.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2022 Tipo del documento: Article País de afiliación: China