Your browser doesn't support javascript.
loading
Inorganic sulfur fixation via a new homocysteine synthase allows yeast cells to cooperatively compensate for methionine auxotrophy.
Yu, Jason S L; Heineike, Benjamin M; Hartl, Johannes; Aulakh, Simran K; Correia-Melo, Clara; Lehmann, Andrea; Lemke, Oliver; Agostini, Federica; Lee, Cory T; Demichev, Vadim; Messner, Christoph B; Mülleder, Michael; Ralser, Markus.
Afiliación
  • Yu JSL; Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom.
  • Heineike BM; Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom.
  • Hartl J; Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany.
  • Aulakh SK; Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom.
  • Correia-Melo C; Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom.
  • Lehmann A; Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany.
  • Lemke O; Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany.
  • Agostini F; Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany.
  • Lee CT; Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany.
  • Demichev V; Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany.
  • Messner CB; Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom.
  • Mülleder M; Core Facility-High Throughput Mass Spectrometry, Charité Universitätsmedizin, Berlin, Germany.
  • Ralser M; Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom.
PLoS Biol ; 20(12): e3001912, 2022 12.
Article en En | MEDLINE | ID: mdl-36455053
The assimilation, incorporation, and metabolism of sulfur is a fundamental process across all domains of life, yet how cells deal with varying sulfur availability is not well understood. We studied an unresolved conundrum of sulfur fixation in yeast, in which organosulfur auxotrophy caused by deletion of the homocysteine synthase Met17p is overcome when cells are inoculated at high cell density. In combining the use of self-establishing metabolically cooperating (SeMeCo) communities with proteomic, genetic, and biochemical approaches, we discovered an uncharacterized gene product YLL058Wp, herein named Hydrogen Sulfide Utilizing-1 (HSU1). Hsu1p acts as a homocysteine synthase and allows the cells to substitute for Met17p by reassimilating hydrosulfide ions leaked from met17Δ cells into O-acetyl-homoserine and forming homocysteine. Our results show that cells can cooperate to achieve sulfur fixation, indicating that the collective properties of microbial communities facilitate their basic metabolic capacity to overcome sulfur limitation.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Cisteína Sintasa / Metionina Idioma: En Revista: PLoS Biol Asunto de la revista: BIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Cisteína Sintasa / Metionina Idioma: En Revista: PLoS Biol Asunto de la revista: BIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Reino Unido