Your browser doesn't support javascript.
loading
Global patterns in marine organic matter stoichiometry driven by phytoplankton ecophysiology.
Inomura, Keisuke; Deutsch, Curtis; Jahn, Oliver; Dutkiewicz, Stephanie; Follows, Michael J.
Afiliación
  • Inomura K; Graduate School of Oceanography, University of Rhode Island, Narragansett, RI USA.
  • Deutsch C; School of Oceanography, University of Washington, Seattle, WA USA.
  • Jahn O; Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA USA.
  • Dutkiewicz S; School of Oceanography, University of Washington, Seattle, WA USA.
  • Follows MJ; Department of Geosciences and High Meadows Environmental Institute, Princeton University, Princeton, NJ USA.
Nat Geosci ; 15(12): 1034-1040, 2022.
Article en En | MEDLINE | ID: mdl-36530964
The proportion of major elements in marine organic matter links cellular processes to global nutrient, oxygen and carbon cycles. Differences in the C:N:P ratios of organic matter have been observed between ocean biomes, but these patterns have yet to be quantified from the underlying small-scale physiological and ecological processes. Here we use an ecosystem model that includes adaptive resource allocation within and between ecologically distinct plankton size classes to attribute the causes of global patterns in the C:N:P ratios. We find that patterns of N:C variation are largely driven by common physiological adjustment strategies across all phytoplankton, while patterns of N:P are driven by ecological selection for taxonomic groups with different phosphorus storage capacities. Although N:C varies widely due to cellular adjustment to light and nutrients, its latitudinal gradient is modest because of depth-dependent trade-offs between nutrient and light availability. Strong latitudinal variation in N:P reflects an ecological balance favouring small plankton with lower P storage capacity in the subtropics, and larger eukaryotes with a higher cellular P storage capacity in nutrient-rich high latitudes. A weaker N:P difference between southern and northern hemispheres, and between the Atlantic and Pacific oceans, reflects differences in phosphate available for cellular storage. Despite simulating only two phytoplankton size classes, the emergent global variability of elemental ratios resembles that of all measured species, suggesting that the range of growth conditions and ecological selection sustain the observed diversity of stoichiometry among phytoplankton.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Nat Geosci Año: 2022 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Nat Geosci Año: 2022 Tipo del documento: Article